
A NAI 610 RESEARCN ON AUTOMATIC YEIFICATION OF FINITE-STATE V/i
CONCURRENT SYSTEMS.. (U) CARNEGIE-MELLON UNIY PITTS8JU
PA DEPT OF COMPUTER SCIENCE.. R E BRYMNT ET AL. DEC 67

UNCLSSIFIED HU -CS- 5 AF-0-11 6 16 FG9/1 L

mohmhohhhEEohE

19145 1*01 __

411" 111i ___

11111125 mj 1 11

4M..

PHOTOGRAPH THIS SHEET

00

w0 LEVEL INVENTORY

00 z %
z%

DOCUMENT IDENTIFICATION
rP?

; = g ,. m appm I

DISTRIBUTION STATEMENT

ACCESSION FOR
NTIS GRA&I

DTIC TAB

UNANNOUNCED DTIC
JUSTIFICATION %LE CTE 0 N

BY
DISTRIBUTION /
AVAILABILITY CODES
Disr AVAIL AND/OR SPECIAL

DATE ACCESSIONED

DISTRIBUTION STAMP

DATE RETI IRNE)

--., ., 05 10

I)ATE RECEIVE) IN I)TIC REGISTERED OR ('I-RTII:IEI) NO.

PHOTOGRAPH THIS SHEET ANI) RE fURN TO I)TIC-I)I)A(

DTIC FOR M 70A DOCUMENT PROCESSING SHEET I'N V4(s I)I1,UN Mr\Y ItI (I,, IH IN!It,
DUC 83 1 IS XIIA ISn HN

vs .*5~*It

AFWAL-TR-87- 1166

0__ RESEARCH ON AUTOMATIC VERIFICATION OF FINITE-STATE
r= CONCURRENT SYSTEMS
(0

00 E.M. Clarke and 0. Grumberg

00
Carnegie-Mellon University
Computer Science Department
Pittsburgh, PA 15213-3890

S December 1987

Interim

Approved for Public Release; Distribution is Unlimited

AVIONICS LABORATORY
AIR FORCE WRIGHT AERONAUTICAL LABORATORIES
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-6543

%%

a, Mx-]

NOTICE

When Government drawings, specifications, or other data are used for any
purpose other than in connection witb a definitely Government-related
procurement, the United States Government incurs no responsibility or any
obligation whatsoever. The fact that the Government may have formulated or in
any way supplied the said drawings, specifications, or other data, is not to
be regarded by implication, or otherwise in any manner construed, as licensing
the holder, or any other person or corporation; or as conveying any rights or
permission to manufacture, use, or sell any patented invention that may in any
way be related thereto.

This report has been reviewed by the Office of Public Affairs (ASD/PA)
and is releasable to the National Technical Information Service (NTIS). At
NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

CHAHIRA M. HOPPER RICHARD C. JONES

Project Engineer Ch, Advanced Systems Research Gp
Information Processing Technology Br

FOR THE COMMANDER

EDWARD L. GLIATTI
Ch, Information Processing Technology Br
Systems Avionics Div

If your address has changed, if you wish to be removed from our mailing
list, or if the addressee is no longer employed by your organization please
notify AFWAL/AAAT , Wright-Patterson AFB, OH 45433-6543 to help us maintain
a current mailing list.

Copies of this report should not be returned unless return is required by
security considerations, contractual obligations, or notice on a specific
document.

'Z _ A..t

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

Form Approved

REPORT DOCUMENTATION PAGE OMSpo 7e4088

Ia REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

Unclassified
2a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION /AVAILABILITY OF REPORT

Approved for public release; distribution
2b. DECLASSIFICATION I DOWNGRADING SCHEDULE is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

CMU-CS-87-105 AFWAL-TR-87-1166

6a. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONiTORING ORGANIZATION
(If applicable) Air Force Wright Aeronautical Laboratories

Carnegie-Mellon UniversityAFWAL/AAAT-3

6c. ADDRESS (City, State, and ZIP Code) 7b ADDRESS (City, State, and ZIP Code)

Computer Science Dept Wright-Patterson AFB OH 45433-6543

Pittsburgh PA 15213-3890

Ba. NAME OF FUNDING/SPONSORING Bb OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFiCATION NUMBER
ORGANIZATION (If applicable) F33615-84-K-1520

87c ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT ITASK WORK UNIT
ELEMENT NO NO NO ACCESSION NO

61101E 4976 00 01

11. TITLE (Include Security Classification)

Research On Automatic Verification Of Finite-State Concurrent Systems

12. PERSONAL AUTHOR(S)

E. M. Clarke, 0. Grumberg
13a. TYPE OF REPORT 13b TIME COVERED 14 DATE OF REPORT (Year, Month, Day) 15 PAGE COUNTInterim FROM TO _ 1987 December 31

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and ,dentify by block number)

FIELD GROUP SUB-GROUP

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

20 DISTRIBUTION,/AVAILABILITY O
F ABSTRACT 21 ABSTRACT SECuRITY CLASSiFiCATION

El UNCLASSIFIED/UNLIMITED 0 SAME AS RPT 0 DTIC USERS

22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE(Include Area Code) 22X 0F - CL S '%'210,
Chahira M. Hopper (513) 255-7 8 5 AFWA./A AAT-3

DO Form 1473, JUN 86 Previous editions are obsolete SECURITY CLASSIFCA-'ON O 1-. rAGE_
Unclassified

. . ." . "-, . ' '. , - - . - -. - .• ."

Table of Contents
1. Introduction I
2. Computation Tree Logics 3
3. The CTL Model Checking Algorithm 5
4. Fairness Constraints 7
5. An Example 9
6. Other Approaches 13
7. Applications 16
8. Conclusion 19

op4%-

4%

°,-

4-
U-

4-
V ,4'

4.

List of Figures
Figure 5-1: Two process mutual exclusion program. 11
Figure 5-2: Transcript of model checker execution (without fairness constraint). 1
Figure 5-3: Transcript of model checker Mcxcction (with fairness constraint). 12
Figu re 7- 1: Algorithm For Constructing Kripkc Structure From Circuit 17
Figure 7-2: Krikpc structurc for unstable configuration of AND gate. 18

vi

lh

Research On Automatic Verification
Of Finite-State Concurrent Systems

E. M. Clarke and 0. Gruimberg
Carnegie Mellon University, Pittsburgh

1. Introduction
Temporal logics were first developed by philosophers for reasoning about the ordering of vnts in

time without introducing time explicitly [Hughes & Creswell 77]. Although a numbcr of diifcrent

temporal logics have been studied, most have an operator like G(f) that :s true in the present iffis

always true in the future (i.e., iffis globally true). To assert that two events el and e2 never occur at die

same time, one would write G(-'elv--,e2). Temporal logics are often classified according to whether

time is assumed to have a linear or a branching structure. This classification may occasionally be

misleading since some temporal logics combine both linear-time and branching- time operators.

Instead, we will adopt the approach used in [Emerson & Halpern 83] that permits both types of logics to

be treated within a single semantical framework. In this paperthe meaning of a temporal logic fbnnula

will always be detennined with respect to a labelled state transition graph; for historical reasons such

structures are called Kripke models [Hughes & Creswell 77].

Pnueli was apparently the first person to use temporal logic for specifying and verifyinig concurrent

programs [Pneuli 77]. His approach involved proving desired properties of the program under

consideration from a set of program axioms that described the behavior of the individual statements in

the program. Proofs were usually constructed by hand, and this task was in general quite tedious. Since V

many concurrent programs can be viewed as communicating finite state machines, there was a strong

possibility that at least some of these programs could be automatically verified. 'I he first veritication

technique to exploit this observation was the CTL model checking procedure developed by Clai L and

Emerson in (Clarke & Emerson 81]. T hcir algorithm was polynomial in both the size of the model

determined by the program under consideration and in the length of its specification in temporal logic.

They also showed how fairness [Gabbay et al 301 could be handled without changing the complexity of

.their algorithm. Handling fairness was an important step since the correctness of many corcurrcnt

'rh. rescich was pari;i Ify uppoitcd by NSF Grant I,(S-82-167O6 TW'c s.cond aUdwr. 0 Grurrbrc. is cirr'ni!, on Icac
from I',chnin. I lai.i mid i, I i.I ,iippotcd hb a \Vci, mann poidoctota fcllowship

Ie

2

algorithms depends critically on some assumption of this type: for example, absence of starvation in a

mutual exclusion algorithm may depend on the assumption that each process makes progress infinitely

often.

At roughly the same time Quielle and Sifakis [Quielle & Sifakis 81] gave a model checking algorithm

for a similar branching-time logic, but they did not analyze its complexity or show how t@ handle an

interesting notion of fairness. Later Clarke, Emerson, and Sistla [Clarke et al 86a] devised an improved

algorithm that was linear in the product of the length of the fonnula and in the size of the globl state

graph. Sistla and Clarke [Sistla & Clarke 86] analyzed the model checking problem for a variety of other

temporal logics and showed, in particular, that for linear temporal logic the problem was PSPACE

complete.

A number of papers have shown how the temporal logic model checking procedure can be used for

verifying network protocols and sequential circuits ([Clarke et al 86a], [Mishra & Clarke 85], [Browne et

al 86], IDill & Clarke 86], [Browne et al 85], [Browne & Clarke 86], [Browne et al 6b]). In the case of

sequential circuits two approaches have been developed for obtaining state transition graphs to analyze.

The first approach extracts a state graph directly from the circuit under an appropriate timing model of

circuit behavior. The second approach obtains a state transition graph by compilation from a high level

representation of the circuit in a Pascal-like programming language. In practice the model checking

procedure is able to check state transition graphs at a rate of 100 states per second for formulas of

reasonable length. It has been used successfully to find previously unknown errors in published dcsigns

of asynchronous circuits.

Alternative approaches have been proposed by a number of other researchers. l[he approach used by
Kurshan [Kurshan 86] involves checking inclusion between two automata on infinite t.apes. The first

machine represents the system that is being verified; the second repre sents its sp,,fic tio. At,,nita

on infinite tapes are used in order to handle fairness. Pnucli and Lichtenstein [Lichtenstein & lnueli

85] reanalyzed the complexity of checking lincar-time formulas and discovcred that although the

complexity appears exponential in the length of the formula, it is linear in the -iue of the global state

graph. Based on this observation, they argued that the high complexity of linear-time model checking

might still be acceptable for short formulas. Emerson and Lei [Emerson & Lei 85] extended their result

to show that formulas of the logic C'TL° , which combines both branching-time and lincar-time

operators, could be checked with essentiadly the same complexity as formlas of linear tcmporal kg;c.

Vaidi and Wolper have recently [Vardi & Wolper 86] shown ho,% the model checking problem c.a be

forrnulted in temis of automata, thUs rcluiig the 1 Idcl checking .or (o lie Aoik o KrLIrhn.

,''-.

3

Although the model checking procedure discussed in this paper has already been used to discover

some surprising errors in non-trivial programs, more work still remains to be done. Certainly the most

serious problem is the state explosion problem. In analyzing a system of ,V processes, the number of

states in the global state graph may grow exponentially with .V. Recent research indicates, however,

that it may be possible to avoid this problem in some important cases. For instance. techniques

developed in [Clarke et al 86b] may reduce the size of the state graph that needs to be searched when

many of the processes are identical. It may also be possible to exploit the hierarchical structure of a

complex concurrent program in order to reduce tie number of states that need to be considered at ani

one level of absuaction "Aishra & Clarke 851.

This survey is organized as follows: Section 2 describes the syntax and semantics of the temporal

logics that are used in this paper. In Section 3 we state the model checking problem and give an efficient

algorithm for checking simple branching-time formulas. in Section 4 we discuss the issue of fairness

and show how the algoridim of Section 3 can be extended to include fairness con.slraintts. Section 5

demonstrates how the model checking algorithm can be used to debug a simple mutual exclusion

program. In Section 6 we describe some alternative approaches for ,erifying sstcms of Finite state

concurrent processes. We analyze the complexity of checking inear temporal logic formulas and outline

the techniques of Pnucli and Lichtcnstein [lichtenstein & Pnucli 851 and Vardi and Wolper jVardi &

Wolper 86].Additional applications to circuit and protocol verification are discussed in Section 7. The

paper concludes in Section 8 with a discussion of some of the important remaining research problems

like the state exp!osion problem.

2. Computation Tree Logics
In this paper finite state programs are modelled by labelled state-transitiou graphs, called Kripke

stnictures[flughes & Creswell 771. If some stare is designated as the initial btatw, then the Kripke

structure can be unwound into an infinite tree with that state as the root. Sircc paths in Lhe tree

represent possible computations of the program, we "ill refcr to the infinite tree ohtalticd il this

manner as the computation tree of the program. Temporal logics may differ according to how they

handle branching in the underlying computation tree. In linear tiemporal logic. operators are pino, tdced

for describing events along a single computation path. In a bra:nching-rime logic the tomporal ,,lerators

qu,,ntify over the paths that arc possible from a gi en state. The computation tre Iho,, CI I

[F'ncrson & Clarke 811, [Emerson & Halpem 8 11. [Clarke et Al 86,1]) conmbinc, both b)h2n c

and linear-time operators; it path quantificr, cithcr A ("t r all compot~itii)n If dls") or I (, :

conillptl tion Pi th")C, mi prelix ;in orti' m po n, lnnprolt f ;i irrr llhlihtu , 0; ilh h '1,11,1 11;1, t Ime

ST

....-,S.P O , .. .M. ,u r ?-UK 9, . i. ---79197%, ',V'."17,-V" '.N-- " "" -"'''- - ' .' .

4

operators G ("always"), F ("sometimes"). X ("nexttime"). and U ("until"). The remaindcr of this

section gives a precise description of the s) ntax and semantics of these logics.

There are two types of formulas in ClI.*: state formulas (which are true in a specific state) and path

fonnulas (which arc true along a specific path). Let AP be the set of atomic propo.,ition names. A. state

formula is either:

" A,if AEAP.

" If f and g are state formulas, then -f and f v g are state formulas.

" If f is a path formula, then F(f) is a state formula.

A path formula is either:

" A state formula.

" If f and g are path formulas, then -f f v g, Xf andfU g are path formulas.

CTL" is the set of state formulas generated by the above rules.

CTL ([Ben-An et al 83], [Clarke & Emerson 81]) is a restricted subset of CFL" that permits only

branching-time operators--each path quantifier must be immediately followed by exactly one of the

operators G, F, X, or U. More precisely, CTL is the subset of CTL" that is obtained if the path formulas

are restricted as follows:

" If f and g are state formulas, then X fand U g are path formulas.

" If f is a path formula, then so is -'f

Linear temporal logic (LTL), on the other hand, will consist of formulas that have the form Af where

f is a path formula in which the only state subformulas that are permitted are atomic propositions.

More formally, a path formula is either

" An atomic proposition

" If f and g are path formulas, then -f fvg, Xf andfUg are path formulas.

We define the semantics of CTL* with respect to a structure Af=(S, R, L>, where

" S is a set of states.

" RCSxS is the transition relation, which must be total. We write s, -- s to indicate that

(s1,s2)e R.

" L: S-.9(AP) is a function that labels each state with a set of atomic propositions true in

that state.

, ,- ,-,..,- 7 ,., ,-,-,,-,,t% , i - - o i, - ..,',-,,'....'...,,..'., . ,." -.":.... ...'.,,, ., . ,. ..., -.,. ,,''. *.

5

Unless otherwise stated, all of our results apply only to finitie Kripkc structures.

We define a path in AM to be a sequence of statcs. ff = s.s,. such that for every i 0. s, St +sP I
will denote tie suffix o O7T starting it s,.

We usc the standard notation to indicate that a state formula fholds in a Sutturc: .i,s =fmeans

that I'holds at SLtC s inl structure AL. Similarly, if f is a pathi formula. 117 Imf ieans that J' holds
alo0ng pah 7T inl StRiC tUre .A1. (lic rcl~itioll t= k de fi ned iidueiC~~ ely asFlb ,t(asuming that f an1d

are stato formla.s and g: and g 2 are path formulas):

1. A C=* A E1.)

3. sfvf2 s =lors fz.

4. sl- FNgl) - there exists a path 7r starting with s such that ir -- g1.
7. J1 s is the first state of 7r and s~A

7. 7Yg v g2 7Y 7 gor 7T g 2.

9. 7F -m g' U g2 - there exists a k 0 Such that 7r 1: Q, an i hl 0r al 10 j < k, 7r g

We will also use the following abbreviations in writing CTIL (Ct and 111I) Formulas:

of A g -'(-'v-g) o Ff~ true Uf

* ~)* Gf f

In (Lamport 801, [Emerson & Halpern 831) it is shown that the three lo-ics discussed inl this section
havc diffcrent expressive powers. I-or e)(dmpic., thCfC is no cEi. f'Ormula h1a i Cq-61-lcnt to tC l

formula A(F~p). Likewise, there is no IA 1I. formula that is equti lent to the GI.T~ :

AG(EF p). Theli disjunction of these two forrmnUlaS l(FG p) V AG(IT p) is a C -L' formla that is not

expressible in either CYL or LTL.

3. The CTL Model Checking Algorithm
I et M = (S, fl 1.) be d flnite Kripke A"iic *suni' hlat \\e wkant to !vrine mih tc inll

saitisfy the CII1. formula _f'. We wl desl 11 iir ilgorithin to opoirte in [, \Ihetits , fl;e\C

all suhfofuili of /of lcmnch 1, the Ccoinf sticoc ffrcc,'(ill tih X11' 'o iii1 \.

I-- e

6

the end of the i'h stage, each state will be labeled with the set of all sUbformulas of length less than or

equal to i that are true in the state. We let the expression lab,''(s) dcnote this set for state s. When the

algorithm terminates at the end ot stage n = length(fo), we see that for all sLites and for all

,.hformulasfofj,, AIs = f ifffE laibel(s)

Observe that AX can be expressed in terms of FX and that AU can he expressed in terms of L l and

EG:

A\V F X = -A^%)

AU'L U,1 -= (F[f-f U (-lJ A -J')] v FG(-J')).

I hus, for the stage i algorithm it is sufficient to be ible to handle six cases. depending on heher 1 is

atomic or has one of the following forms: --f, f vf, EXf1 , LfV 1J.4] or EGf.

We will only consider the last two cases, since the others are straigh-tforward.

To handle formulas of the form f= FE'lUfl we first find all of those shates that are labeled with f2.

We then work backwards using the converse of the transition ;elation R and find all of those states thit

can he reached by a path in which each state is labeled with J'. All such states sho;uld !e laheled Ih j.

This step requires time 0(1 S + I R I).

11,c case inl -hich f= F(;f, is slightly more complicated and depends on the foloving obsler vaton.
-

l.cnma 1: Let A' be obtained from Al by deleting from S all of those states at which ' does not

hold and restricting R and I. accordingly. Ihus, Al' = (S', R', L') where S' = {sE SAI =f N,

R' = RI' xs', and I.' = I'IS" Then Ms EFG/I iff the following two conditions are satisfied:

1. S'

2 there exists a path in S' that leads from to ,oic node i in a n:oi-in oi' t ongl,, connectcd
component" orthe graph (S' .R').

Proof: Assume that A,s - F G , . Clearly 3E 5' I ct - he ain itimte path sii ling i t s ,uch dt -

holds at state Ii 7t o . Since Al is tiniC, It lllvnt hC possible to ,%ritc 7 is 7r = 7 7,r. "here r s ai

filntec i iti',l Segme! and 77. is an t'1:;1tc \lC , , ,, n w the p per. ' 'h-t ,,h '.': ; ,

F.' .~ -- .~

7

infinitely often. Obviously '70 is contained in S' . Let C be the set of states in irt. C is a nontrivial

strongly connected component of S'. To see this, let s and s2 be states in C. Pick somc instance of s,

on ort. By the way in which iTI was selected, we know that there is an instance of s2 further along *r,.

The segment from s, to s2 lies entirely within C and hence within St .This segment is a finite path

from s, to s, in S'. Thus, both condition (1) and condition (2) are satisfied.

Next, assume that conditions (1) and (2) are satisfied. Let n'1 be the path from s to t. l.et 72 be a

finite path ol'length at lcast one tlat leads from I back to t. I he CxStencC of 7r, Is guaranteed since (Is

a non-trivial strongly connected component. All of the states on the infinite pad ir = 7r.7r.' satisfy r.

Since 7r is also a possible path starting at s in At. we sec that .,s = EGf. 0

The algorithm for the case of f= EGf0 follows directly from the lemma. We construct the restricted

Kripke structure Al' = (S', R', L') as described in the statement of the lemma. We partition the

graph (S', R') into strongly connected components and find those states that belong to nontrivial

components. We then work backwards using the converse of R and find all of those states that can be

reached by a path in which each state is labeled with f,. This step also requires time 0(1 SI + I R I).

In order to handle an arbitrary CTL formula £. we successively apply the state labc!ing alguritdim to

the subformulas off o, starting with the shortest, most deeply nested and work out'Aard to include all of

f. Since each pass takes time 0(1 SI + I RI) and since fu has length (J,) dilfccnt sub1 rmut!a,, the

entire algorithm requires 0(length (fo). (1 I1 + I R I)).

Theorem 2: There is an algorithm for determining whether a CTH. formula f, is true in sttc s of the

structure A/ = (S. R, L) that runs in time 0(length(f,). (I SI + I R!

4. Fairness Constraints

In verifying concurrent systems, we are occasionally interested only in correctness along fuir

execution sequences. For example, with a system of concurrent processes we may w ish to consider only

those computation sequences in which each process is executed infinitely often. When dealig ith

network protocols where processes communicate over an imperfecct (or lossy) channel wc rm.ty Ao kh

to restrict tile set of computation sequences; in this case the unfair execution sequences arc ihe'e in

which a sender pro+:cos conuinuously trantrniiis mie ¢nes wilhit any reaching ti receiver thue to errmtic

bcha ior by de channel.

l~l ,t 'l!l ,.' t.+k n ," .l .i +,.Y~v ,n~ it +I t,,,,'I ',,lll lt Cl I',t< l * ,.' w c .ii .' ;I tt'l " ,ll'l iO ll!. , l" 'I

8

Different concepts of what constitutes a "request" and w hat "Sufficiently often" should mean gi'.c rise

to a variety of notions of fairness. Indeed, many different types of fairness and approichcs to dealing
with them have been proposed in thc literature: we refer thc reaidcr to [Gabbay et at S01. [I arnport 801,

[Quicthe S& Sifakis 32], and [l.ehrnann et at 311 for more extensive treatments. [he text by Urancez

[FranCC7 361 also gives an excellcnt survey of the various tE pcs of fairniess.

In this section we wvill show how to extend the CIt Lmiodel checking algorithmi to handle a simple but

funidarMntl, t~ PC of fairness in which cc! tam predicates mUst hold in!iio! llen alo :ivg C \er !J11 padh.

[Clairke et al 86a1 shows how to handle a richer class of fairness oenstrainits.) hr. ths c isc it foh"s sfroin

[F~tncrson & Halpern 331 that corrcctness of fair executions c.annot be expressed in C'I 1.

In order to handle fairness and still obtain an efficient modcl checking algorithm we mnodify the

semantics of ChL The new logic, which we call CHi. ,has the samc s ntax as C I- IlUt a structure is

now a 4-tuple A! = (S, R, L. F) where S, R, /. have the same meaining ats in the case of ClL, and h'is a

collection of predicates on S. f'C 2S. A path 7Y is ['-fu'r iff tie follow ing condition holds: for each

G E F, there are infinitely many states on rr which sati~fy predicate Cf. 0I L. has exactly the same

semantics as CTL. except that all path quantifieis range over fir pathis. The First step in checcking C L.LF

formulas is to determine the fuir strongly conituch'd cwpIiici of die graph of If. A\ strmiv:-, coniiceted

componenit is fair if it contains at least one state from each set in F. Formally, let P' li (. GK e a

collection of subsets ofS. A strongly connected component C of the graph of Al is fatr iff for ea~ch GI, in

F, there is it state t E (Cn G).

Lemma 3: Givea any finite structure Al = (.5, R. L, P') where F is a set of faiiinc~s -unstraii~ts and a

state S, E S. the following two conditions are equivalent:

1. Thcre Cxists an PF-fair path in Al starti ng at s .

*2. [here exists a fair strongly connected component (of(thc s riph oi) 1l "u~h illit lheic: is a
Finite path from s. to a state IE C.

Trhe proof is straight forward and is gi'~en in [Clarke et il 80al. We next extend our miodel chcking

algorithm to CEL F. We introduice an idditional proposition Q2, w hich is Lte at a 'aatc: iff there s, a fiir

path starting from that State. [this can eaihe dlone.1h., ohtaining the ,t onvl conticcted cinitponclis

of the graiph associated w ith the tructu rc and m.r:a ;t1c; poct, i it ionta k5a i ne

state fromi eaLh GI in /-13 [li te abo\ c Ic inma c ci srac in a di r siron,:;. c0o necCed u 0niJ'oi',ket 1S thie

start of mn infinite fair path. Ithus, we label1 a1 ,,lte %Ih Iti, dii 1"he .1 Pa.ch 1rolll that toII i owo

UA

9

node of a fair strongly connected component. As usual we design the algorithm so that after it

terminates each state will be labeled with the subformulas offo true in that state. We consider the two .,

interesting cases where f is a subformula of ., and either f = F[f Uf] or f = FGf. We assume.."

that the states have already been labeled with the immediate subformulas of f by an earlier stage of the

algorithm.

I. f = F[f Uf]: f is true in a state iff the CTI. formula F[./ U fA Q)] is true ii that state.
and this can be deteTnined using the CT. model checker. Again, state s is labeled with 'iff
f is true In tht state.

2..f= FG(f) lo determine if s == EG (J') we use the procedure descrthcd in section 3 to 4

check s== EG (f A Q) in the structure with the additional proposition Q.

It is easy to see that the above algorithm runs in time O(lengili (fo) (I S I + I R I).

Theorem 4: There is an algorithm for determining whether a CTL F formula f0 is true in state s of the

structure M = (S, R, L, F) with F as the set of fairness constraints that runs in time

0(length(fo). (SI + I R I).

5. An Example
In this section we illustrate how the model checker can be used to %erify a simple, but not entirely

trivial, concurrent program. The example is a two process mutual cXclusion program that Wa.; Mn1ua.lly

proved correct using linear temporal logic by Owicki and Lamport in [Owicki & I-amport 82]. Die

program, expressed in a variant of the CSP programming language [H-oarc 73], is shown in Figure 5-1.

In this version of CSP processes may have global variables (e.g. pl and p2), and assignments to such

variables are assumed to be atomic. Since our verification technique can only be used to analyze finite

state concurrent systems, we require that all variablcs be boolcan and that all messages bctwcen

processes be signals. Labels (e.g. NCI and NC2) are used to indicate that flow ofcontrel his reached I

particular point in some process. In our example there are two prcesses SI and S2. and each process

has three code regions: a noncritical region VCi in which the process computes some data values that it

wishes to share with the other process, a rying region Ti in which the process cxecutes a piokcol to

obtain entry into the critical section, and a critlical Sec lion CSi in whih the ri,,cess updates sihred

sariables. To prevent a race condition that might result in unpredictable valucs heing assigned to the

shamed variables, only one process is ailoed to bc in its crititl sCctou ,t aiv 1.1 wlite. Note tiat die

two processes are di llrent: hence his is not a stinciric solutiin to the miuttJil cxclu, ion piohlcm.

When the CSP program is compiled a ,late grh 'ith 77 sLitet,, is ohi id. \iitlow 2h this s t t, al

CxtrClllCly l~ltgC st ae mli.'hille, it ,ould lickCtl cllc'-,, h, q0i11 ioti M ., l .l Itii.oi t((I d ug.

__. I
SM fl tfaf fl M . . * ~~ q' * * M ''S*4 S ..,,

4 S"5 4
U., %54 - S,, 'w

5
N'..~.~.~. Y*~%• 5 ']i'S

10

We initially run the verifier without any fairness constraints--See Figure 5-2. We first check to see if

both processes are ever in their critical regions at the same uine. This property is succintly expressed by

the CTI. formula EF(CS1 A C.52). The verifier rapidly determines that the formula is false--hence, the

program does guarentee mutual exclusion. Time is measured in 1/60 of a second. The first component

mcasures user cpu time. The second component measures system cpu time. We next check for absence

of deadlock. This is expressed by the formula AG (EF.(C. v C52)). The verifier detcnnins that this

formula is satisfied: thus, from any state that is reachable from the initial state it is always possible to get

to either 51 or CS2.

Absence of starvation for process 1 is expressed by the formula AG (T1 - A FCSI). This property is

not satisfied without a fairness constraint. The reason is quite simple. When we build the global state

graph for the program we do not make any assumptions about the relative speeds of the two processes.

Thus, the second process can make any number of steps between steps of the first process. In fact, the

second process can even Run forever, thereby preventing the First process from ever making another

step. We can rule out the second type of behavior by means of fairness constraints which require that

each process be given a chance to execute infinitely often. In Figure 5-3 we restart the verifier with

several fairness constraints that prevent either process from remaining forever at the same statement

while enabled to make a step. Under these assumptions the first process will ne~er starve. I lo% c cr, the

possibility of starvation stil exists for the second process.

A good solution to the mutual exclusion problem should not require that processes alternate entry

into their critical regions: CS1, CS2, CSI, CS2. In order to test that the algorithm given iii Figure

5-1 does not require strict alternation, we check the formula

AG (CSI - A[CSI U(-,CSI A A[-'CS1 U CS21)]).

This fornula asserts that if process 1 enters its critical section and subsequently leaves it, thene it cannot

enter it again until process 2 has entered it:; citical section. '[he verifier deter'mine , that the 1ormula is

false in less than a second. This example shows how the b,,sic temporal opciators. particnl.,rly the witdi

operator, can be nested to express complicated timing properties.

Finally, the verifier has a counterexample feature (that is not shown in the tr.n,;cripts). When this

feature is enabled and the model checker determines that a firmula is a,,e. It w II attenipt to find a path

in the state graph which dc:nonstrates that the negatior, Of the !'ormula is true. For !:(' f the

fornula has ihe form AG (f), our s stcm % IIl produce a path to a ste i II Mich -. holds. F:o r

instance, w hen the verifier deteines that th. 1. t '01rnlt iLh ,e it fake. it a rin is out an C\CCt Ion Of

11%

s
pl,p2: bool;
NCl,NC2,TI,T2,T2a,CS1,CS2: label;

SI,S2: process;
SI

p1 faise; ;

true ->

<<NCI>> skip; --noncritical section 1
pl := true;

<<TI>> *[p2 -> skip];
<<CSI>> skip; --critical section 1

p1 false

.NIIlk

S2 [
p2 false;

true ->
<<NC2>> skip; --noncritical section2

p2 := true;
<<T2>> *[p ->

p2 false;
<<T2a>> *[pl -> skip];

p2 true
]a.

<<CS2>> skip; --critical section 2
p2 := false

Figure 5-I: Two process mutual exclusion program.

-.1,

12

CTL MODEL CHECKER (C version 2.5)

1= EF(CS1 & CS2).

The equation is FAISE.

time: (2 4)

1= AG(EF(CSI I CS2)).
I he equation is 1 RUE.

tnie: (4 2)

1= AG(TI -> AF CS1).Ihe equation is FALSE.

time: (17 12)

Figure 5-2: Transcript of'Iodel checkcr eXecution (without fairness
constraint),

Fairness constraint: -NC1.
Fairness constraint: - NC2.
Fairness constraint: ~CS1.
Fairness constraint: -CS2.
Fairness constraint: -T1 I P2.
Fairness constraint: -T2 pl.

Fairness constraint: -T2 I -p IT2a.
Fairness constraint:.

I= AG(T1 -> At: CS 1).

The equation is TRUE.

time: (10 0)

1= AG(T2 -> AF CS2).
The equation is FALSE.

time: (29 9)

1= AG(CSL -> A[CSI U (-CS1 & A[-CSI U CS2])]).

The equation is FALSE.

time: (38 17)

Figure 5-3: Transcript of model checker cxecution (Aith faieTeS constraint).

- - * ,fIF -- I%%~h1' it -. .. - 4

13

the mutual exclusion program in which process I enters its critical region, leaves, and reenters without

process 2 entering its critical section in the meantime. This feature is quite useful for debugging

purposes.

6. Other Approaches

Several papers have considered the model checking problem for linear temporal logic t'0n'las. let

M = (S. R, 1) be a Kripke Structure with s, E S, and let Af be a linear tcmporal logic 'onimnlI. I hus.'-

fis a restricted palh fJrmula in which the only state subfoniulas are atomic proputir ,. WC sh to -,

determine if A.,s 0 == Af Notice that H.s I Afift 1/.% I'= -E -f. ConScquentL , It IS, uIt,- c't tL be

able to check the truth of formulas of the form Ef where /is a restricted path formula. In general, thdis

problem is PSPAC'-complete [Sistla & Clarke 86]. Although the proof of this PSP.\Cl:-cornpletcncss

result is beyond the scope of our survey, it is easy to see that the model checking prohlern is NP-hard

for fotmulas of the form Ef where fis restricted path formula. We show that the directed Hamiltonian
patlhproblem is reducible to the problem of determining whether .lf,s :f where -

Al is a finite structure, %-
.-

o s is a state in M and

o fis the assertion (using atomic propo-,itions p,, ... P)""
i.[Fpj A .. A lFp, A G(pj -- XG",p.)A ... A G (p, --- G'1,,)I."

Consider an arbitrary directed graph G = (V, A) where V = Vv 0 We o11i a stRucture

from G by making proposition pi hold at node v, and false at all other nodes (for 1 :5 i_< n), and by

adding a source node u1 from which all vi are accessible (but not vice \crsa) ard a sink node !1, "hich

is accessible from all v, (but not vice versa). Formally, let the structure Af = (U. B./.) conist of

U = 'U {uI,1'} whcrc ului V;

B = ,i U {(u:, Vj v, E I/ U {(v,, U) v, E t} U {(u., nA;)J and

L is ,an issignment of propositions to states such that

* pis truc in vfor l_i:5n

" p, is false in v, for lij<_n, tj

" p, is false in u.,n, fur 1 !5 i:S n

%.4'

FU 6YVmO~

14

It is easy to sec that A,u * fiff thcrc is a directed infinite path in 3f starting at u. which goes through

all v, E V exactly once and ends in the self loop dhough u2 . Note that the formula fin the above

construction has essentially the same size as the as the gr, ph G. Suppose that the length of the formula

to be checked was known to be much smaller than the siie of the Kripkc structure under consideration.

Would the complexity still be high in this case? A careful analysis by lichtenstein and PI)uch

[.ichtenstein & Pnueli 85] showed that although the complexity is apparently exronential in the length

of the formula, it is linear in the size of the global state graph. We briefly describe their results below.

I.etfbe a restricted path formula. The (uvire off (l(f). is the smallest sct ' formuls contain;ng f

and satisfying:

* -,fl E CI.(f) ifff E C[.(f)

" iffvf 2 CI(f), then If 2 E CI(f)

* if Xf E CL(f), then f E CL(f)

" if -Xf E CL(f1), then X-, E CL(f)

" if fU/U E CL(f), then],fl, XVUf i CIl.()

It can be shown that the size of Cl(f) is 5 length(f).

An atom is a pair A = (SA, I',) with SAES and I"AC(L(f)U..Il' such that:

" for each proposition Q E Al', Q E I"A iff Q E L(SA)

" for every fA CL(f), f, E FA iff -f'A FA

" for every ,f4 E CL(f), A vf2 E FA iff f or f e FA

" for every -XAj E CL(f). -Xf E FA iff X-f E FA

* for every f1.fz E CL(f),fUf, .FA ifff2 E FA. or f , XLfU'Jf E FA

Now, a graph G is constructed with the set of atoms as the set of %erticcs. (,\,B) is an edge of 0 iff

(sA, s) E R and for every formula fi, if Xf C I".4, then f FB. An eventualti> scqucncc is an infinite

path ,r in G such that if f Uf, c F4 for some atom A on 7. then there exists an atom B, rea hable

from ,4 ;dong wr, stuch that 4A E1".

Lrnrna 5: A/. -- Ff iff there exists ,n eventuality sCquenc N,1u-tng at an ,mOm (, F) such that
f,¢ I".

15 ..4

A non-trivial strongly connected component C of the graph G is said to be self-fulfilling iff for every

atom I in C and for every fUf2 E /.: there exists an atom 11 in C such that],'I E B

Lemma 6: M.s * Ef iff diere exists an atom A = (s, I) in G such that I'E F and there exists a path

in G from A to a self-fulfillin g strongly connected component.

ILemma 6 he used as the baios for a linear temporal logic model checking algcrithim. I his algorithm

has the time coinplcxit 0 ((IS +I RI) 2 '"'1")). I.ichteIhLein ind Pimci Il'i rthcr th,,,cd h i,,, ih,

basic algorithm could be extended to handle a number oft different notions or fairness wkith csentullv

the same complexity.
.,.

An alternative approach due to Vardi and Wolper [Vardi & Wolper 861 cxploits the close relationship

between linear temporal logic formulas and Bichi automata. A Iichi uutumala is a tupic

A S. P. S, F), where

* X is an alphabet.

* S is a set of states.

Sp •Sx Z -, 2S is a nondeterministic transition function.

" S, .S• is a set of initial states.

* -CS is a set of designated states.

A run of A on an in finite word w = aka..., is a sequence ss... where s,) S(and s, E p(-. a), for

all i> 1. A run s 1s.., is accepting if there is some designated state that repeai5 infinitely often. i.e., for

some s E F there are infinitely many i's such that st = s. The infinite word w is accepted by ..I if there is

an accepting run of A over w. The set of infinite words accepted by .1 is denoted L(A). The followAing

theorem ik prm, ed in (Vardi & Wolper 96j.

Lemma 7: For every linear temporal formula kf, a liichi automata ,I can be constructed, Ahere

Z = 2 and ISI 2 lefg -9 ' f) , such that L(,1/) is exactly the set of computations satisfying die formula

f

A Kripkc Structure it/ (S. R, 1.) with initial state s, E Scan be 'ic',ed as a 1iichi a tom,itonl

(I.= S, {sj. p, S) \here X = 2 and ' E p(s. a) iff (s, S') R 1 and a = to(s). Note that any

infinite run of this automaton is accepting. L(.I,) is the set of computations of . Ilu ,. In ordr to

determine whether .f = = ' it is siifficicnt to check ,hether 11.1 ,) t () is empty I hi, ,+n he

,..

16

determined by an automata theoretic construction with essentially the same time complexity as the

Pnucli Lichtenstein algorithm.

One of the expected advantages of using linear temporal logic is that fairness constraints can be

handled directly. However. if fairness constraints are included as part of the specificatinfs. the formulas

that must be checked will in general be quite large. For instance, considcr a fairne,, constaint Mhich

requires that progress he made from any state in the program. Thc formula that expresscs this property

is

,\[A -'G(at s) -, <rest ufspecjhaiion>j,
FE S

which has siue O(.SI). This problem was realized by [.ichtenstcin and Pnucli and by V,irdi and Wolper.

They in fact handle fairness by means of fairness constraints in a manner very similar to the wa. it is

handled in [Clarke et al 86a]. Another problem with using linear temporal logic is that in general it is

impossible to handle specifications which involve existential path quantifiers. Although it is possible to

check simple formulas of the form Ff where f is a restricted path formula, it is not possible to check

formulas like AG(EFf), which is used to express absence of deadlock in the example in section 5.

Moreover, model checking for the ftill logic CTL ° is no more difficult than for linear temporal logic as

was shown by Emerson and Lei (Emerson & Lei 851.

Theorem 8: If we are given an algorithm /'lILTL to solve the model checking problem for linear

temporal logic, then we can construct. an algorithm ALCTL" for the full logic Ci L" tiat has the same

order of complexity as ALLTL.

7. Applications
Sequential circuit verification is a natural application for the type of veritier discussed in this paper.

Bochmann [Bochmann 82] was probably the first to realize the usefulness of temporal logic for

describing the behavior of circuits. Ile verified an implementation of a self-timed arbiter using iincar

temporal logic and what he called "reachability analysis." The Aork of Malachi and O% icki [Nlala'ch &

Owicki 81] identified additional temporal operators required to express interesting properties of circnits

and also gave specifications for a large class of modules used in self-timed circuits. Although these

researchers contributed significantly toward developing an adequate notation for expressing the

correctness of sequential circuits, the problem of mechanically verifying a circuit remained unsolved.

In [M shra & Cla ke S51 Clarke and Mishra showed how the EMC algorithm could hc used to \,city

various temporal properties ofasynchronous circuits. [hey developed a technique for e.xtra[.ug a \,Lte

.... ; ...:.:.:..,....-...* :., ..: -. -,

17

graph directly from a wire-list description of the circuit (i.e., from a description of the circuit in terms of

its components and their interconnections). The model checker kas then used to show that statc graph

satisfied various specifications exprcssed in temporal logic. In this way teliy were able to determine that

a self-timcd qucueLI element descrihcd in Seitz' chapter of Mead and Conskay [Seitz 801 did not satisfy its

specifications. 'I heir work was later extended by Browne, Clam ke. D ill, and \lishrai [B~rownecE atl

861 who showed, in gencral, hlow a mixed gate and switch lcvel circuit simulator Couild be used to extract

a statc graph front a structural description of a sequential circuit. [he basic simulation algorithmi is

showni in ligure 7-1. Cir'cLits ,irc uSUally desig1ned uinder the ax, ,umptioni di.i, certain !nput ,C,4UQcCCS

and comibinations wNill not occur, J heir programn exploiL , this obwr\ ilmun Lu pre~cnt *1 :uniInmo r 1al

eXPlosion in the number of states that are generated, by allow,6ing Lhe user to spkccify a set of conditions

uinder which the inputs can change.

(The procedure below uses a hash table that maps node
value assignments to states.To construct the state machine,
call this procedure on a node_value..assigninent for the
initial state.)

procedure BuildGraph(Node.value _assignment) return a state
* begin

if there is a state for the node _ value _assignment
already in the table then return the state;
else

* Create a new state;
* Label state wuith nodes that have i values:
* Store state dnid node values together in hash table;

for each possihle input assignment do
Combine current values for internal nodes and input
assignment into a now node_ value-_assignment:
Simulate one step to find a new node, assignment:
Call BuildGraph recursively on new node issignment:
Add value returned by previous line to GU;Ccessors of
current state;

end
end

end
* Figure 7-1: Algonitchm For Constructing Kripke Structurc IVromn Circuit

The circuit simulator in fIBrowne et al 86] used a unit-delay timing miodel in which the switching

dclays of all the transistors and gates are assumed to he equal. Whilc a unit-dclhy model is am mtr

for synchronous circutits, it may not he appropriaite for aisynehiommous circuits. In [Dimll & Clairkc SO] I)III

and Clarke showed(how K ripke structures could be extracted froin a gate Iec l description of' I ctircit

uinder a model of circuit beha~ mor that permittedi arbitrary noim/ero delays to he associlatd ith the

outputs of the li-tes. [hle hasic ideam tfchnd thcir ippr.ch is quite siinplc. (oiiu~d in \\ I) .. , t:c \k

18

two inputs. x and y, and a single Output z. Assume that tie gate is in an unstabic configUration A~i th

low, y high, and z high. The Kripke struIcture for the circuit containing this gate ilI have a state

corresponding to the unstablc configuration as shown in Figure 7-2. The staite will ha~e a self-loop and

a transition to anothcr state representing a stable configuration in which the outp~ut is low. Fairness

constraints, as described in Section 4, ar-c Used to inSUrc thatL UICh S Stem doecsn't remain 111 11n lntable

configuration forever. In the case of thc AND -atc. it is sufficient to trequlrc that fielv~C% Oftenl

z = xAy.

YZr

y

Figure 7-2: Krikpc structure for Unstable configuration of AND gate.

In practice, the arbitrary delay model is much too conservatve. .Man circuits a1re 'Idmost specd

independent": [hey do not appear to L-e correct uinder a pure arbitrary delay mnodel, but \%k uld .%,,k

given reasonable assumptions about the relationships between the dlelays. When the cir~tnit destener

has a great deal of control over the magnitudes of circuit delays, exploiting more deta-ilcd k. noA ledge of

circuit timing can result in smaller and faster circuits. In faict, actual circuits often re, ly n sChl

assunmptions. In [Birowne et al 851 and [Dill 86] a miethod is described for adding suIch JYSiMlptionls to a

circuit description and incorporating them into the staEC-2raph construction. Possible tining constraints

include constant uipper and lower bouinds on individual klclays, and bounds onl the differences loceten

delays. Using constraints of this form, one can say for example: "the delay of the fir\, AND) caie is

between 5 and 10 nanoseconds" or "the delay of the First *\ND gate is grecater than the udelay of the

second AND gate." The state graph coiistiuctcd with respect to a particular ;ct of dclai 1'SLJ1TljtiOllS

rules out some circuit executions which would be allowed Under an aul'iirarv delaty model. I lepce,

formulas in Cl L which might not have beeni tr-ue in an arbitrary (delay inmdcl rna\ be true ith re pcct

to particular delay assumptions (becail.]e .all tho coointerexamplc pathis :)re ruled out hY Ohw deily

aSSuImptions). This tch iqueILI as applied to a patented as~ nLhronous q.IUCi ieclII i iie Ct Al S].

T[he auithors determined that theC clicuit did HO[tmeet its specifications tinder the iihltrii c!Cmci' t1 dcl i

- 9% ~ % W' N.'~S.~ V ,* ' ~.?.i %

19

model. However, under the assumption that the input was slower than two of the circuit gates, they

showed that the circuit met its temporal logic specifications.

An alternative approach obtains the state diagram by compilation from a specification of the original

(synchronous) circuit in a simple programming language-like notation. Bro% ne and Clarke (11Brow ne et

al 86], (Browne & Clarke 86]) use a Pascal-like state machine description language called S.MI. trfr .his

purpose. I he language includes the standard control structures if, while, aid loop/exit. A colwcgin

,tatemcnt is also provided for simultaneous execution of statements in lock-step. Since SNIL progi,,ms

w ill ultimatcly be implemented in hardw are, thc only data types permitted are bO,7'0ni iid (,' ,unded)

integer. The output of the SML compiler is a deterministic Moore Machine that can he 11 UrnaL)c.a-1ly

implemented as a PIA, PAL., or a ROM. The output can also be analyied for correctness using tle

EMC algorithm. In (Browne 861 Browne describes a specialized version of the EMC algorithm that can

check Moore machines much more rapidly than the original algorithm.

Another potential area of application is the verification of network communication protocols. The

alternating bit protocol [Barflet et al 69] for reliable transmission of messages by a noisy communication

channel is a simple example of such an algorithm. By using the CTL model checking proccdure it is

possible to determine in a few seconds whether this protocol meets its spccfic,,tiens [Clarke ct Al S,].

Sifakis at Grenoble [Quielle & Sifakis 81] and Kurshan at Bell Labs [Kurshan 36] hae also consijered

applications involving network protocols. The dclay assumptions mentioned above may be useful for

dezcribing the real-time behaior of such protocols.

8. Conclusion
Although the verification technique described in this paper has already ben used to find some

nontrivial errors in circuit designs and communications protocols, more research needs to be done

before it will become a truly practical debugging tool for use by s',tcn dcsigeis. One pioblein i die

expressibility of the underlying temporal logic. For circuit specification tim.-i L:-gramis may be more

natural to use than temporal logic formulis. Of course, temporal logic is more general since there is no

analogue of negation, disjunction, or conjunction for timing diagrams. It may be possible to et.her

systematically translate timing diagrams into tenporal logic formulas or check them directly using an

algorithm similar to the one used hy the model checker. If so, tlis sould simplifr the task of spkx.t'Ong

a complicated circuit and also allow the designer to be mole conlident that specifications actually men.in

what he thinks they mean.

I.'

",I

" "'",°"d I , """d """. a "" "-". W . """-)". #""= ."" """= ,- o""- ," ""- d""" . "= . " .)" ' ," . """ ."". ." ~''" "" " '

20

The most important problem, however, is the Ataae explosion probletn. Therc arc several different

strategies for handling this prohlem. In \oiitying asy nchronous, circuits, for example, bUggy Circuits

sometimes result in much Ligr state gra:phs, Uhan correct circuits. This happens because the acti~itv in

die circuit is mnuch mrore diwrdcred after in error hais occut red. One possible soIlution in (is case is to

run thle program which buiilds the state graph iid the rnodcl checcker as co-routincs. creatingix tes only

as they need to he refercinced by ' the moLdel-checker. In [Dill 86] this techniqueC is called .avsiate

gceratiwn, by analogy to laz% e flitit~on in p rog rmn ig ia guoage in i pcmen tatio ns. l3 usim n rIi is

% ~~mcthod. an error cold he licocered anid -eported after cw rmtmuct!ng (-n[. a ,nill part[-,t :Ie Centic

state graiph: 11 this old M1 ill Peedup U he UCi %CieJUiaIp ce. wICCS it AOI .ilsk MAC tL (.' o

serify somile circuits whlich euulc not be enfe if the entire Ltiapil had to he constructeii.

Another approach to the state explosion problemn is to exploit the hierarchical structure of complex

Finite state concurrent systemis. If an apprprIILte subset of Cl 1.IS isusd ([MIishra & Clarke 8S1, [Clarke

cc al 861)]), then lower le~el si&i~cuiLs can be implified by 'hiding" somie oftheicr internal lodecs (more

precisely, making it illegal to use the m in temnporal logic fomulas) and mcraing groups of stts (hat

hecome Indistinguishable into single state. Preliminary research in [Nlishra & Clarke 85] ndc t:hait

by using this tzc hnique A may be possible to cu~t-down 1ramatically on the ninber of states that neecd

to he examnined.

Finally, special techniques miay be appropriate for concurrent systems thait are comio,of 11t 11i2

identical pioce scs. Con:;mdk.r, (01- example, a distribtuted Mutual eXCIlus:- ioalgOrithmn !(r pi 'C'ic5

arranged in a ring network in which mutual exclusion is guaraiiteed by means of a token ih.it ispad

around the ring ([[Jijkstra 85]. [Ktirshan 851. [Mai tin 851). A strategy that is ofteni used hrdehcn

such system,, Is to consider first a reduced s'ostem with one or twoL processes. If it is pos-sihIe ta1 'oWA 0hA

the reduced ssstemr is correct and if tile indis dual processes are really idecnticail, then one o, *teirnp,_A !io

colIcIudC di die entire systmi will be i t.Iii [Clam ke ct dl S6b] an mt p is mnade :) o'r'.de a

solid theoretical basis that w ill prevent 1illacious concilsions in aigumnrts olf thiis ty..pe. I heu.U'or

describe a temporal logic called Thdext'd C7'I, or ICTI. for specify 1mg ijetworks o fidentical proc.cc'es.

TIhe locic includes all of Cl'! w, ith the exception of thle nexttime operator: in addition, it permts

formulas of the formn A 1(1) and Vy (/) where f(t) is a form u i in which all oi'the atomnic pr n 'pu' cons

aire subsm ipted by i. A Kripke structure for a family of N identical pr cesses may be obtimind ;,s a

produIct of the state graphs of the indlidual processes. Insminces of, thle s. mne 'A1111 1 PI11 tw ill

di [crcrnt processes ire dIstIIIago mshcd hy uising thie number oi the procels as asuibset mit thus. ,

irpresets OIC in ,,unce of atin ic pm op ISitMtIis idAdipn~ 5.

'p * ~ 'S - * * - . . - - - - ~ . -

21

Since a closed formula of ..he new logic cannot contain any atomic propositions with constant index

values, it is impossible to refer to a specific process by writing such a formula. Hence, changing the

number of processes in a Family of identical processes should not effect the truth of a formula in the

logic. This intuitive idea is made precise by introducing a new notion of bisimulatioln [Milner

791 between two Kripke structures with the same set of indexed propositions hut diffcrcnt sets of index

values. It is possible to prove that if two structures correspond in this manner, i closed formula of

Indexed CTL will be true in the initial state of one if and only if it is true in the initial state of the

other.

These ideas are illustrated in [Clarke et al 86b] by considering the distributcd mutual exclusion

algorithm mentioned above. The atomic proposition ci is true when the i-th process is in its critical

region, and the atomic proposition di is true when the i-th process is delayed waiting to enter its critical

region. A typical requirement for such a system is that a process waiting to enter its critical region will

eventually do so. This condition is easily expressed in ICTL by the formula AAG(d1 AFc,). The

results of [Clarke et al 86b] can be used to show that exactly the same ICTL formulas hold in a network

with 1000 processes as hold in a network with two processes. The EMC algorithm can be used to check

automatically that the above formula holds in networks of sizewo and conclude that it will also hold in

networks of size 1000. At present this methodology has only been partially automated, hovcecr. The

bisimulation must be established by hand and this generally requires some rcpresentation of th" largcr

Kripke structure. Several researchers are attempting to find a way of automating this phase in a man',er

that avoids building the larger Kripke structure.

Other techniques for avoiding the state explosion problem arc being investigazed by Kurshan and

Wolper. In Kurshan's system [Kurshan 85] this problem is handled by using a homomorphism to

collapse a large state machine into a much smaller one while prescrving those properties that are

unpo[tait for - crificatiun. Since Kutshanl dUCs 1ot use temporal logic fonolhs foi spccIfICatiuMr, he tas

no analogue of the indcxcd formulas or of the bisimulation theoiem used in [Clarke et al 86b]. \Vlper

[Wolper 86] considers a logic somehat like ICTL" for reasoning about programs that are dita-

independent: however, his indexed variables range over data elements, not o'cr processes. Also, there

is no notion of correspondence between stnictures in his work. Some ultimate limiiitions on this type of

reasoning are discussed in Apt and Kozen [Apt & Kozen 861.

-U.

0

~~W ~ ~ WY 7VW r W 1,w U V 1W VW1 WV ' -b ,(N. y~ N P wjr-.yV 'JP 4 ~ .

22

References

[Apt & Ko.cn 861 K. Apt and D. Kozen. l.imits for Automatic Verification of -initc-State Concurrent

Systems. Inf Process. Lett. 22(6):307-309, 1986.

[BartcE ct al 691 K.A. Bartlct, R.A. Scantlebury. P.T. Wilkinson. A Note on Reliable Full-Duplex

Transmission o',. er 1-alf-)uplex Links. Comntilica tons of the. 1C.I[12(5):260-261. 1969.

[Ben-Ari ct al 83] A. Bcn-Ari. Z. Manna. A. Pnculi. The Temporal Logic of Branching Time. Acta

Informatica (20):207-226, 1983.

[Bochmann 82] G. V. Bochmann. Hardware Specification with Temporal Logic: An Example. IE['E

Transactions on Computers C-3 1(3), March, 1982.

[Browne 86] M. C. Browne. An Improved Algorithm for the Automatic Verification ot' Finite State

Systems using Temporal Logic. In Proceedings of the 1986 Coiy'erence on Logic in (omputcr Scte:ce.,

pages 260-267. Cambridge, Mv1ussachUsetts, Jun1e, 1986.

[Browne & Clarke 86] MI. C. Browne, F. M. Clarke. SML: A high level language Cor the design and

verification of Finite State Machines. In IFIP WVG 10.2 International Working Confi'rence from 1fDL

Descriptions to GuaranteedCorrect Circuit Designs. Grenoble, ",ou e.. IFIP, S,-pteibcr, 1986.

[Browne ct al 85] M. C. Browne, E. M. Clarke, I).)ill. Checking the Correcuics of Sequential

Circuits. In Proceedings oj'the 1985 Internattonal Co fcretce on Computer Design. IEEE, Port Chcter,

New York. October, 1985.

a

23 '

[Browne et al 86] M. Browne, E. Clarke, D. Dill, B. Mishra. Automatic Verification of Sequential

Circuits using Temporal Logic. IEEE Transactions on Comnputers C-35(12), December, 1986.P

[Browne et at 6b] M. C. Browne, E. M. Clarke, and D. Dill. Automatic Circuit Verification Using

Temporal Logic: Two New Examples. G.J. Milne and P.A. SUbrahmanyam (editors). Formal Aspects

of VLSI Design. Elsevier Science Publishers (North Holland), 1986b.

[Clarke & Emerson 81] F.M. Clarke, F.A. Emecrson. Synthesis of Synchroni~ation Skeletons for

Branching Time Tremporal L ogic. In Proc. of the Workshop on logic of Prugrains. Sp ringcr-Vcrlag,

Yorktown Heights, NY, 1981.

[Clarke et al 86a] E.M. Clarke, E.A. Emerson, A.P. Sistla. Automatic Verification of Finite-State

Concurrent Systems using Temporal Logic Specifications. ACMf Transactions on Programming

Languages and Systemns 8(2):244-263, 1986.

[Clarke et al 86b) E. M. Clarke, 0. Grumbcrg, M. C. Browne. Reasoning about Networks with inany

identical finite-state processes. In Proccedings of the Fifth Annual ACMf Symposium on Principles of

Distributed Computing., pages 2.40-248. ACiMv, August, 1986.

[Dijkstra 851 E. Dijkstra. Invariance and non-dcter-minacy. In C.A.R. Hoare And I.C.Shepherdson

(editors), Mlathematical Logic and Programming languages, pages 157-103. Prentice- Hall, t985.

[Dill 86] D. Dill. A Trace Theoretic Approach to Asynchronous Circuit Verification. Workshop on

Design and Implementation of Concurrent programsGroningcn, The Netherlands, No' ember 17-21.

1986

24

[Dill & Clarke 86] David L. Dill and Edmund M. Clarke. Automatic Verification of Asynchronous

Circuits using Temporal Logic. IEE Proceedings 133, pt. E(5), September, 1986.

[Emerson & Clarke 811 E.A. Emerson and E.M. Clarke. Characteri/.ing Properties of Parallel Programs

as Fixpoints. In Springer Lecture Notes in Computer Science. Volume 85: Proc. of the Seventh

International Colloquium on Automata. languages atd Programming. Springer Verlag. 1981.

[Emerson & Halpern 831 F.A. Emerson, J.Y. Halpern. ""Sometimes" and "Not Never" Rcvisitcd: On

Branching versus Lincar Time". In Proc. 10th AC Symp. on Principles of Programming Languages.

1983.

[Emerson & Lei 85] FA. Emerson, Chin Laung Lei. Modalities for Model Checking: Branching Time

Strikes Back. Twelfth Symposium on Principles of Programming Languages New Orleans, La. , January,

1985.

[Francez 861 N. Francez. Fairness. Springer Verlag, 1986.

(Gabbay cc al 80] 1). Gabbay,,A. Pnculi, S. Shelah, and i. Scavi, The Temporal Analysis of Fairness. 7th

,A Symposium on Principles of Programming Languages. :164-173, January, 1980.

[Hoare 78] C.A.R. Hoare. CoirununicaLing Scqucntidl Processes. Cummunihutios (fthe AC.1 2148),

August, 1978.

[Hughes & Creswell 77] G.E. Hughes and MI.J. Creswcll. An Introduction to 'odal Logic. Mecthuen

and Co., 1977.

- - - - 4 - - '- '-~--,- - - . N.

25

[Kurshan 85] R.P. Kurshan. Modelling Concurrent Processes. In Proc. of Symposia in Applied

Mathematics. 1985.

[Kurshan 86] R.P. Kurshan. Testing Containment of w-Regzular Languages. Technical Report

1121-861010-33-TIM, Bell Laboratorics Technical McmorandUrn, 1986.

[Lamport S01 L. Lamport. "Sometimes" is Sometimes "Not Never". In Seventh Annual ACM

Symposium onl Principles of Programming Languages, pages 174-18M. Association for Computing

Machinery, Las Vegas, January, 1980.

[Lehmann et al 811 D. Lchmann, A. Pneuli. J. Stavi. Impartiality, Justice, and Fairness: Thc Ethics of

Concurrent Termnination. Automnata, Languages, and Programming. Springer Verlag LVCS 115, 1981.

[Lichtenstein & Pnueli 85] 0. Lichtenstein and A. Piueli. Checking that Finit State Concurrcnt

Programs Satisfy Their Linear Specification. In Con~ference Record of the Twelth Annual ACM

.Symnposium on Principles c/ Programming Languages. New Orleans, La., January, 1985.

[Malachi & Owieki 811 Y. Malachi and S. S. Owicki. fremporal Specifications of Self-Timed Systems.

I n I'. K Ung, Bob Sproull, and G. Steele (editors), VLSI Systems and Computations. 198 1.

[Martin 851 A. 'Martin. The Design ufd Self-Timed Citcuit i Dkiiibuted MuLUal ExclUSion. Ill

Henry Fuchs (editor), Proc. 1935 Chapel ll Conf on VLSI, pages 247-260. 1985.

[1Mimer 791 R.Milner. L.ecture N~otes ini Compu ter Science. Volume 92: A (,Cculus of(CoUllunwaltiC7ing

Systems. Springer-Verlag. 1979.

V_

26

[Mishra & Clarke 85] B. Mishra, E.M. Clarke. Hierarchical Verification of Asynchronous Circuits using

Temporal Logic. Theoretical Computer Science 38:269-291,1985.

[Owicki & Lamport 82] S. Owicki, IL. tamport. Proving Liveness Properties of Concurrent Programs.

ACM Transactions on Programming languages and Systems 4(3):455-495, July, 1982.

[Pneuli 77] A. Pneuli. The Temporal Semantics of Concurrent Programs. In 13th Spmposium on

Foundations of Computer Science. 1977.

[Quielle & Sifakis 81] J.P. Quielle, J. Sifakis. "Specification and Verification of Concurrent Systems in

CESAR". In Proc. of the Fifth International Symposium in Programming. 1981.

[Quielle & Sifakis 82] J.P. Quielle, J. Sifakis. Fairness and Related Properties in Transition Systems.

IMAG (292), March, 1982.

[Seitz 801 C.Seitz. System Timing. Inroduction to VLSI Systems (C. .fead and L.Coni.ay). Reading,

MA, Addison-Wesley, 1980.

[Sista & Clarke 86] A.P. Siscla, E.M. Clarke. Complexity of Propositional Temporal Logics. .Iournai of

the Association for Computing Machinery 32(3):733-749, J uly, 1986.

[Vardi & Wolper 86] M. Vardi and P. Wolper. An Automata-Theoretic Approach to Automatic

Program Verification. In Proceedings of the Conference on Logic in Computer Science. Boston, Mass..

June, 1986.

(~Wolper 861 P. Wolper. Expressing Interesting Properties of Programs in Propositional Temporal

Logic. In Thirteenth ,1CM Symposium on Principles of Programming Languages. 1986.

KWop. 811P opr _rssneneetn rprte fPorm n,~ooinlfmoa

IAL sD

171

D$IC/

-Al 610 RESEARCH ON AUTONATIC VERIFICATION OF FINITE-STATE in
CONCURRENT SYSTEMS.. (U) CANEOIE-NELLON UNiy PITTSIURMI
PR DEPT OF CONPUTER SCIENCE.. R E BRYANT ET AL. DEC 8?

UNCLSSIFIED CN-CS-87-10 FML-TR-07-1166 F/U 91

I,*lfllllllll
lllfll
Eu..

111111iNo
fIII=!* 5

IL t.

PHOTOGRAPH THIS SHEET

LEVEL INVENTORY

co z

ACESO FOR 7- e 4

DOCUMENT IDENTIFICATION

e I

ram. 6moieat hb. be"sagsu

DTIC TAB DI
UNANNOUNCED D TIC

By ' FEB 0 9 1988 0

DISTRIBD BSONTR TN A E

AVAILABILITY CODES

DATE ACCESSIONED

A-B

DISTRIBUTON STAMP

DATE RETUIRNEI)

Q 05 102

I)ATE RECEIVED IN DTIC RE(ISTERI'D OR CERTIFIED NO.

PHOTO(;RAPII THIS SIIEET AND R f[URN TO I)TI-I)I)A(

DTIC FOkM 70A DOCUMENT PROCESSING SHEET PI Vl()kbs I MI(IN MAY [It t ", [)I'N,,
DEC 83 S.TO)CK IS (X!tiAIqTf 0.' -

AFWAL-TR-87-1166

_ RESEARCH ON AUTOMATIC VERIFICATION OF FINITE-STATE
CONCURRENT SYSTEMS I A

0 E.M. Clarke and 0. Grumberg

00
U Carnegie-Mellon University

Computer Science Department
Pittsburgh, PA 15213-3890

S December 1987

Interim

Approved for Public Release; Distribution is Unlimited

AVIONICS LABORATORY
AIR FORCE WRIGHT AERONAUTICAL LABORATORIES
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-6543

.4

VVVV V '. V '

NOTICE

When Government drawings, specifications, or other data are used for any
purpose other than in connection witb a definitely Government-related
procurement, the United States Government incurs no responsibility or any
obligation whatsoever. The fact that the Government may have formulated or in
any way supplied the said drawings, specifications, or other data, is not to
be regarded by implication, or otherwise in any manner construed, as licensing
the holder, or any other person or corporation; or as conveying any rights or
permission to manufacture, use, or sell any patented invention that may in any
way be related thereto.

This report has been reviewed by the Office of Public Affairs (ASD/PA)
and is releasable to the National Technical Information Service (NTIS). At
NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

CHAHIRA M. HOPPER RICHARD C. JONES-
Project Enzineer Ch, Advanced Systems Research Gp

Information Processing Technology Br

FOR THE COMMANDER

~u

EDWARD L. GLIATTI
Ch, Information Processing Technology Br
Systems Avionics Div

If your address has changed, if you wish to be removed from our mailing
list, or if the addressee is no longer employed by your organization please
notify AFWAI./AAAT , Wright-Patterson AFB, OH 45433-6543 to help us maintain
a current mailing list.

Copies of this report should not be returned unless return is required by
security considerations, contractual obligations, or notice on a specific
document.

L6I

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

Form Approved

REPORT DOCUMENTATION PAGE OMBIVo 0704-0188

la REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

Unclassified
2a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTiON/AVAILABILITY OF REPORT

Approved for public release; distribution
2b. DECLASSIFICATION 'DOWNGRADING SCHEDULE is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANiZATION REPORT NUMBER(S)

CMU-CS-87-105 AFW4AL-TR-87-1166

6a. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONTORING ORGANIZATION
(If applicable) Air Force Wright Aeronautical Laboratories

Carnegie-Mellon University AFWAL/AAAT-3

6c. ADDRESS (City, State, and ZIP Code) 7b ADDRESS (City, State, and ZIP Code)

Computer Science Dept Wright-Patterson AFB OH 45433-6543

Pittsburgh PA 15213-3890

8a. NAME OF FUNDING/ SPONSORING 8b OFFICE SYMBOL 9 PROCUREMENT INSTRi'MENT IDENTIFiCATiON NUMBER
ORGANIZATION (If applicable) F33615-84-K-1520

15c. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO NO NO ACCESSION NO

61101E 4976 00 01

11. TITLE (Include Security Classification)

Research On Automatic Verification Of Finite-State Concurrent Systems

12. PERSONAL AUTHOR(S)

E. M. Clarke, 0. Grumberg
13a. TYPE OF REPORT 13b TIME COVERED 114 DATE OF REPORT (Year, Month Day) 1'S PAGE COUNT

Interim FROM TO 1987 December] 31

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and dentrfy by block number)

FIELD GROUP SUB-GROUP

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

20 OISTRIBUTION AVAILABILITY Or ABSTRACT 21 ABSTRACT SECURiTY CLASS.,PCAThON

E" UNCLASSIFIED'UNLIMIrED 0 SAME AS RPT C3 DTIC USERS
22a NAME OF RESPONSIBLE INDiviDUAL 22ti TEEP O E(Inclu Area Code) 22x(. S"'BOI

Chahira M. Hopper (513) 255-7865 AWAI./AAAT-3

DD Form 1473, JUN 86 Previous editions are obsolete SECUPI TY CtASS4,CA- O' O ' acl_ CE

Unc C-as Si f ie d

r P,

Table of Contents
1. Introduction 1.
2. Computation Tree Logics 3
3. Thbe CTL 'Model Checking Algorithm 5
4. Fairness Constraints 7
5. An Example 9
6. Other Approaches 13
7. Applications 16
8. Conclusion 19

List of Figures
Figure 5-1: Two process mutual exclusion program. 11
Figure 5-2: Transcript of model checker execution (without fairness constraint). 12
Figure 5-3: Transcript of model chcckcr cxecution (with fairness constraint). 12
Figure 7-1: Algorithm For Constructing Kripke Structure From Circuit 17
Figure 7-2: Krikpc structure for unstable configuration of AND gate. 18

vi

Research On Automatic Verification
Of Finite-State Concurrent Systems

E. M. Clarke and 0. Grimberg
Carnegie Mellon University, Pittsburgh

1. Introduction J

Temporal logics were first developed by philosophers for reasoning about dhe ordering of events in

time without introducing time explicitly [Hughes & Creswell 771. Although a number of ,ii,'crent

temporal logics have been studied, most have an operator like G(f) that :s true in the present if f is %

always true In the future (i.e., iffis globally true). To assert that two events e, and e, ncer occuLr at the

same time, one would write G(-eiv-=e2). Temporal logics are often classified according to whether

time is assumed to have a linear or a branching structure. This classification may occasionally be

misleading since some temporal logics combine both linear-time and branching-time operators.

Instead, we will adopt the approach used in [Emerson & Halpern 83] that permits both types of logics to

be treated within a single semantical framework. In this papei'the meanirg of a temporal logic formula

will always be determined with respect to a labelled state transition graph; for historical reasons such

structures aie called Kripke models [Hughs & Creswell 771.

Pnueli was apparently the first person to use temporal logic for specifying and verifying coi[cLrrent

programs [Pneuli 77]. His approach involved proving desired properties of the program under

consideration from a set of program axioms that described the behavior of the individual statements in

the program. Proofs were usually constructed by hand, and this task was in general quite tedious. Since

many concurrent programs can be viewed as communic.ting finite state machines, there was a strong

possibility that at least some of these programs could be automatically verified. 1 he first veriicaition

technique to exploit this observation was the CTL model checking procedure developed by Clai kc and

Emerson in [Clarke & Emerson 81]. 1 heir algorithm was polynomial in both the size of the inodel

determined by the program under consideration and in the length of its specification in temporal logic.

They also showed how fairness [Gabbay et ,d 801 could be handled without changing the complexity of

.their algorithm. Handling fairness was an important step since the correctness of" many concurrent

Ihis r.scatch was pnri;. IIy uptoiicd by NSF Gia I M(S-82-1706 r'c Ntcond axildir. 0 Grumb'r: is (-iirro,-n orn lea~c
front icchnion. I lfi .;d i

,
;li t c I . , V , rv i n potdocto .a! !'lIowhip

0"

,~-..']

2

algorithms depends critically on some assumption of this typc: for example, absence of starvation in a

mutual exclusion algorithm may depend on the assumption that each process makes progress infinitely

often.

At roughly the same time Quielle and Sifakis [Quielle & Sifakis 811 gave a model checking algorithm

for a similar branching-time logic, but they did not analyze its complexity or show how to handle an

interesting notion of fairness. Later Clarke, Emerson, and Sisda [Clarke et al 86a] dcvised an improved

algorithm that was linear in the product of the length of the fonnula and in the size of the globa|l state

graph. Sisda and Clarke [Sistla & Clarke 861 analyzed the model checking problem for a %arict, offther

temporal logics and showed, in particular, that for linear temporal logic the problem was PSPACE

complete.

A number of papers have shown how the temporal logic model checking procedure can be used for
verifying network protocols and sequential circuits ([Clarke et al 86al, [Mishra & Clarke 85], [Browne et

al 86], [Dill & Clarke 861, [Browne et al 85], [Browne & Clarke 86], [Browne ct al 6b]). In the case of

sequeatial circuits two approaches have been developed for obtaining state transition graphs to analyze.

The first approach extracts a state graph directly from the circuit under an appropriate timing modcl of

circuit behavior. The second approach obtains a state transition graph by compilation from a high level

representation of the circuit in a Pascal-like programming language. In practice the model checking
procedure is able to check state transition graphs at a rate of 100 states per second for formulas of

reasonable length. It has been used successfully to find previously unknown crrors in published dcsisns

of asynchronous circuits.

Alternative approaches have been proposed by a number of other researchers. The appioach used by

Kurshan [Kurshan 86] involves checking inclusion between two automata on infinite tapes. The first

machine represents the system that is being verified: the second rcprcsents its sp,,!fic-.tion. Vl, Tilta

on infinite tapes are used in order to handle fairness. Pnueli and Lichtcnstein [Lichtenstcin & PnuCli

85] reanalyzed the complexity of checking linear-time formulas and disco'ercd that although the

complexity appears exponential in the length of the formula, it is linear in the 'i/e of the global state

graph. Based on this observation, they argued that the high complexity of linear-time model checking

might still be acceptable for short formulas. Emerson and Lei [Emerson & Lci 851 extended their result

to show that formulas of the logic CTL*. which combines both brainching-time and lincar-tiihc

operators, could be checked with cs;enti.ifly the sanC complexity as formltdas of linear temporal 1cg;c.

m\di and Wolper have recently [Vtdi & Wolpcr 801) shown heo, the model clhcck in prohlen cma he
f"rrnmul.atcd in ter If automnata. thu, rcAi.iJiiig ti1C ITnc dcl checking cot'r,,,,. he cik c4 KLIINIUh.

5 e . o " O O " o - • o . °) o ' ~ ' o . o - - . -,. -

3

Although the model checking proccdurc discusscd in this paper has alrcady been used to discoverA

some surprising errors in non-trivial programs, more work still remains to be done. Certainly the most

scrious problem is thc state explosion problem. In analyzing a Systcm of N processes, the number of

states in tie global state graph may grow exponentially with N. Recent research indicates, however,

that it may he possible to avoid this prohlem in some important cases. For instance, =cchniqueS

developed in (Clarke et al 86b] may reduce the size of thle state graph that needs to he searched wvhen

many of the processes arc identical. It may also be possible to exploit the hierarchical StRICuIce of a

complex concurrent program in order to reduce the number Of states that need to be considered at any

one level of abstraction [Mishra & Clarke 851.

This survey is organized as follows: Section 2 describes thle syntax and semantics of thle temporal

logics that are used in this paper. In Section 3 we state the model checkig problem and give an efficient

algorithm for checking simple branching-time formulas. In Section 4 we discuss the issue of fairness -

and show how the algorithm of Section 3 can he extended to include fairness constraint's. Section 5

demonstrates how the model checking algorithm can be used to debug a simple mutual exclusion

program. In Section 6 we describe some alternative approaches for xerifying systems of Finite state

,orncurrent processes. We analyze the complexity of checking near temporal logic formulas and outline ,-

the techniques of PnUeli and ILichtenistein [Lichtenstein & Pimeli 851 and Vardi and Wolper [Vairdi &

Wolper 861.Additional applications to circuit and protocol verification are discussed in Section 7. Thle

paper concludes in Section 8 with a discussion (of some of the important remaining research prohlems.

like the staie exp!osion problem.

2. Computation Tree Logics
Inl this paper finite state programs are modelled by labelled state -transition graphs, called Kripke

Stiicturcs [I lughes & Creswell 77]. If some staite is designated as thle initial state, then the Kripke

structure can be unwound into an infinite tree with that stite as the root. Siroc pa-ths Inl Ole tree

represent possible computations of the program, we Aill refer to the infinite tree obtained inl this

mannicr as the computation tree of the program. Temporal logics may difir according to ho~k they

handle branching in the underlying computation tree. In linear temuporal logic. operators arc piiwOided

for describing cx ents along a siiigle computation path. In a branich ing-ti me lopic thle temnporal ojk~rators

qudntfify oicr thle pathIs that are possible from a gix en sctt. *[hle compuitation tree ho'l Cl (I1

[Fincrson & Clarke 81), [Emerson & Halpern 81). [Clarke et Al 86ali) comhbine\ bothhinicm e

and linear-time opciators: at path quanilier, elifier A ("to~r all ctolimi~tlonl r dts-) or 1: ;TICr

C(iipitiiinImith) can prefixa ;ill rio .o pwdi htixCuimhmnll.1tij' 11Cmmm Ia tflT1C .

4

operators G ("always"), F ("sometimes"). X ("nexttime"). and U ("until"). The remaindcr of this

section gives a precise description of the syntax and semantics of these logics.

There are two types of formulas in CTi.': staiefonnulas (which are true in a specific state) and path

fonnulas (which are true along a specific path). Let AP be the set of atomic proposition names. Astate

formula is either:

" A,if AEAP.

" If f and g are state formulas, then -f and f v g arc state formulas.

" If f is a path formula, then l'(f) is a state formula.

A path formula is either:

" A state formula.

" If f and g are path formulas, then -f f v g, Xf andfU g are path formulas.

CTL is the set of state formulas generated by the above rules.

CTL ([Ben-An et al 831, [Clarke & Emerson 81]) is a restricted subset of CrL that permits only

branching-time operators--each path quantifier must be immediately followed by exactly one of the

operators G. F, X, or U. More precisely, CTL is the subset of CTL° that is obtained if the path formulas

are restricted as follows:

" If f and g are state formulas, then XfandfU g are path formulas.

" If f is a path formula, then so is -f

Linear temporal logic (LTL), on the other hand, will consist of formulas that have the form Af where

f is a path formula in which the only state subformulas that are permitted are atomic propositions.

More formally, a path formula is either

" An atomic proposition

" If f and g are path formulas, then -if f v g, Xf andjU g are path formulas.

We define the semantics of CTL with respect to a structure M= (S, R L>, where

" S is a set of states.

" RCSxS is the transition relation, which must be total. We write s, - s, to indicate that

(S.,S) E R.

" L: S-9(AP) is a function that labels each state with a set of atomic propositions true in

that state.

WV rv" F-A P1V~ R XRArPUI.r , -k F1 6' 'V F I'W I LJU In1,WV "Vv r ,wPr r "rV~w.7rv-w

5

Unless otherwise stated. all of our results apply only to finite Kripke structures.

We define a path in Af to be a sequence of statcs. ir = s...such that for every i 2O , s-+ s,. 7r

will denote the sufftix of if starting at si.

We use the standard notation to indicate that a state formula I' holds in a StruIcture: .1f,5l:=f meians

that f holds at state s in structure 1M. Similarly, if f is a path formula,.117 f mneans that f holds

alon1g path 7y in StiCti rc .1t. [hle relaion t-- i n[ed H IICLI Cls JS f'o)l 0k (aSSuing 11 thit J lnd I'

are stato fornlals and g ,and g ,are pach frmn-ulas):

3. s =f, Vf s 1=,or s f.

4. s *Fg 1) there exists a path 7r starting with s such that 7f 1, gl.

5. 7r -L s is the first state of 7f and s lJf.

7. 7 1=g V g2 7r --gor i g2.

9. 7F I' g U g2 - there exists a k 0OSuch that iff 1:g and to(rai!] 0~sj <k, r- 1 g,

We will also use the following abbreviations in writing C~T- (CiT and IAT.) formulas:

of A g -(-'V-g) *Ff~ true Uf

In ([Lamnport 80], [Emerson & Halpern 83]) it is shown that the three logics discussed in this section

have diffcrent expressive powers. For example, there is no CIL f'ormula thait :is ccluialcnit to thc 1,FL

formula Ai(FGp). Likew.ise, there is no 1.-11 formula that is cquk'.tlent to the C01 f'rn'ula

AG(EFp). The disjunction of these tw&o formulas AI(FIG p) VAG(EFp) is a Cl-L* formnula that is not

expressible in either CFL or Lit.

3. The CTL Model Checking Algorithm -

I ct .11 (S. R. 1.) be ai hlnite K ripke aru~tm c., \ssunic thatL \% A ant to (1eteriiine \01lhi h stateS Inll

saitisfy tie CA L formula f'. We Will CeICgIn ,ur ,ilgoritlmi to opcrtie in t.:;Ihe tir,;t hepOe50

all subformntilas of f (dkln,--h 1. the wecond ,t~ic procc,,xc, ill suhrnt 'o oc11, \tirJ

z-

6

the end of the ith stage, each state will be labeled with the set of all subformulas of length less than or

equal to i that are true in the state. We let the expression label(s) denote this set for state s. When the

algorithm terminates at the end of stage n = length(fo), we see that for all states and for all

subfc rmulasfof.I,, AI,s = f iff f E label(s) .

Observe that AX can be expressed in terms of EX and that AU can bc expressed in terms of FU and

EG:
A X£ f, 1, X :,,

AV f] ='(EI'f, U ("m' A V EG(-Jf)).

'I hus, for the stage i algorithm it is sufficient to be able to handle six cases. depending on herher f is

atomic or has one of the following forms: -fl, f vf 2, FXf1 , I.VV Uf> or FGf.

We will only consider the last two cases, since the others are stuaightforward.

To handle formulas of the form f= F.* Uf1 we first Find all of those suites that arc labeled with f2.
We then work backwards using the converse of the transition ;elation R and find all of those states that

can he reached by a path in % hich each state is labeled with f. All suchI states shunld he la!heled th .
This step requires time 0(1 SI + I R I).

lk, casc ii 'which J'= F(;f is slightly more complicated and depends on the folloving obs'crvaton.

lemma 1: Let If' be obtained from A! by deleting from S all of those states at which f does not

hold and restricting R and 1. accordingly. lhus, .l' = (S', R'. L') where S' ={s E SIA.sIf ,

R' = RIS" xs' and L' = !.18' . Then M,s EG iff the following two conditions are satisficd:

1. scS'

2. the' exists a path in S' that lcids [rom S to sonic iodC I ill a o,1-t1-1 ia sUtongl\ conectCed
component 2 or the graph (S' .R').

Proof: Assume that A.s -- F.Gf . Clearly SE S' . ,et 7T he an inrinite path ,tai ting at , 4uch th.t. f
holds at ealih state on 7T . Since .l is fin I e, It IIIUt he possilIe to , rite 7r as 7r 7 r,r A, hcre 7r is a

fiiLe initial segment ,ind 7r, is All ii11tC O" 7 I \ith tihe pi) lrt' tit C,.Th ,tLC i, l 7

l l'' , I ,i i 1

I'

7

infinitely often. Obviously 7r0 is contained in S'. Let C be the set of states in f. C is a nontrivial

strongly connected component of S'. To see this, let s, and s2 be states in C. Pick some instance of s,
on 7r. By the way in which ff1 was selected, we know that there is an instance of s, further along r,.

The segment from s, to s, lics entirely within C and hence within S' . This segment is a finite path

from s, to s, in S'. Thus, both condition (1) and condition (2) are satisfied.

Next, assume that conditions (1) and (2) are satisfied. Let 7ri be the path from s to 1. let 7r2 be a

finite path of length at leas. one that leads from t back to t. lhe existence of 7r, is guaranteed since (is

a non-trivial strongly connected component. All of the states on the infinite path rr 77 r 7T. satisfy r.

Since 7r is also a possible path starting at s in Af, we see that Jf,,- 1 =Gf. 0

The algorithm for the case of f= EGf0 follows directly from the lemma. We construct the restricted

Kripke strcture H' = (S', R', L') as described in the statement of the lernma. We partition the
graph (S', R') into strongly connected components and find those states that belong to nontrivial

components. We then work backwards using the converse of R and find all of those states that can be

reached by a path in which each state is labeled with ji. This step also requires time (I SI + I R I).

In order to handle an arbitrary CTL formula f. we successively apply the state labcing algorithm to

the subformulas off 0 , starting with the shortest, most deeply nested and work out'.kard to include all of

f0. Since each pass takes time 0(1 SI + I R I) and since f, has length(.0) dflfernt subforMnula,,, the
entire algorithm requires 0(le,gth(fo) (I SI + I R I)).

Theorem 2: There is an algorithm for determining whether a CI. formula f, is true in state s of the

structure Al = (. R, L) that runs in time 0(lenvth (fe)" (I S I + I R!

4. Fairness Constraints

In verifying concurrent systems, we are occasionally interested only In correctness along fitr

execution sequences. For example, with a sy stem of concurrent processes we may v.ish to conider only

those computation sequences in which each process is executed infinitely often. When d,il:ng ith

network protocols where processes communicate over an imperfect (or lossy)channel \c tniiy ilso \ish

to restrict the set of computation sequences; in this case tie unfair execution sequences are thse in

which a sender pry:es contimuously transmiis mesnages wiih',ut an reaching the receivcr de to err.itic

hcliai r by the channel.

h{ u I . '.,[ki'.,,l .. irncu" ,s i,nuliihi u-,,,.,' l,, I}.[I'ujlils[' I',C \h'C .ui . :' ;tl l" tllh ,T
I '

, " " "

•,...-,.

8

Different concepts of what constitutes a 'request' and what "Sufficiently often" should mean gisc rise

to a variety of notions of fairness. Indeed, many different types of fairness and approaches to dealing

with them have been proposed in the literaJture: we retfer the reader to [Gahhay cc at SO]. [I impor-t 801.

[Quichle & Sifakis 82], and [l.chrnann ct at 811 for more extensive trecatmets. [hie text by Francez

[FranCC7 36] also gi~.es an excellent survey of the various t% pes of fairnless.

In this section we will show how to extend the Cit* model checking algorithmi to handle .i simple hut

rundaniental t~ pe of fairness in v.ichi l.,!U mpredicaes MUst hold infinitcl often alwni Ce Cr, !Ar palh.

[Clarke et at 86al shows how to handle a richcr class of (,iirncss ct'nstraifcs.) In th:s c isc itr K' Cr-

[Finer-son & Halpern 331 that currcctnes-, of fair executions c,,nniot he cxprc,,sed in C1.

In order to handle fairness and still obtain an efficient model checking algorithim we mnodify the

semantics of IL Trhc new logic, which we call CII. ,has the same s ntax asC 1IL. But a ,tructure is

now a 4-tuple Al = (S. R, L, F) where S, R, /. have the same mc~ming ats in the case of GI L, and Fis a

collection of prcdicates on S, bFC 2S. A path 7Y is F-fiiir iff tie followAing condition holds: for each

G E F, there are infinitely many) states on w~ which satisfy, predicate Cy. C'I L. Fhas exactly the same
semantics as CTL except that all path quantifieis range over Fair paths. Thec firs, step in ch ckig C [Lb

formulas is to determine the fair sironiglv Connwct'd co'p ticni oif the graph or If. .A stroiiml, .O)MICC ted

componenit is fair if it contains at least one state from each set in F. Formally, let F li U (~ e a

collection of subsets of .Y. A strongly connected component C of the graiph of.1l isfiir iff for c~ich (f' in

F. there is a Nute t E (Cf (,).

Lemma 3: Given any finite structure Af S R. L, F,) where F is a set of faiinc~s constrairts and a

state 5, E S. the following two conditions are equivalent:

1. There exists an l'-fir path in Af starting at s .

* 2. [here exists a fair strongly conncted component (of(ti g riph oi) 11 ',Lkh tlii theme iN I
* Finite path from so to a state IE C.

The proof is straight forward and is gi'~cnii i Clarke CL tl 86(11. We next extend our modcl Lheeking

algorithm to CTL F. We introduce an .idditmoil proposition Q, w hich is tUe11 A A state itf there ic, a tliir

path starting from that state. this cin casil:. he done. h., ohtaining the ,tionvl% coneim~c omipencuis

of the graph associated %4 ith thc tructu rc ind m ir com .1Wi --, .i .I,, ~iU it '~ftI 1i A 1 Cine Ol

state fromi eaLh GI, in . ll the abosc ekm ma ec ti in a tam r stio n ul. comncted ot iipollkent ;S [ie

start of lit infinite fair path. thus, weC libel a q"ite iii !It it he is .1 p.,: i ronm di~miii to 1I'e

9

node of a fair strongly connected component. A~s Usual we dcsign the algorithm so that after it

terminates each state will he labeled with thc subtbrrnulas of f0 truc in that state. We consider Oic two

interesting cases where f is a subfo6rmula of], and either f = F[f, UfJ' or f = FGf,. WVe assulme

that the states have al1ready been labeled with the immediate SUbformulas of f by an earlier stagc of the

algorithm.

1. f = F[f Uf 1: f is true in a state iff thc CTT. formula F[f II (Jf A Q) I is true inl that state,
and this canl he determined using the ClI. model chiecker. A~gain, state s is labeled with f 1ff
] is truLC inl that state.

2. f = ['G(f,): lu determine if S= 1KG (fi) we USe the pro.cdure describedl inl section 3 to
check SO FG(f A Q) in the structure with the additional proposition Q

It is easy to see that the above algorithm runs in time O(lenguli (fo) -I 5 I + I R I))

FTIheoremu 4: There is an algorithm for determining whether a CTi formula f0 is true in state s of the

structure Jl =(S, R, L, F) with F as the set of fairness constraints that runs in time

0(length (f0) (IS I + I RI))

5. An Example
In this section we illustrate how the model checkcr can be used to verify a simple, bui not entiely

trivial, concurrent program. [he example is a two Process mutual eXClusion program that wa.; min11Ually

proved correct using linear temporal logic by Owicki and Lamport in [Owicki & Lamport 821. The

program. expressed in a variant of the CSP progrzimming language [FHoare 731, is shown in Figure 5-1.

In this version of CSP processes may have global variables (e.g. p1 andi p2), and assignments to such

variables are assumed to be atomic. Since our verification technique can only be Used to analyze finite

state concurrent systems, we require that all v.ariables be boolean and that all messages betwecen

processes be signals. Labels (e.g. NCI and :VC2) ire used to indicate- that flow of con!trol has Aece %

particular point in some process. In our example there are two procscs VI and 5'2. and each process

has three code regions: a noncritical region NCi inl which the process computes some1 data vaIlues that it

wishes to share with the other process, a fryinig region Ti in which the process CXeCuteS a p1otocol to

obtain entry into the critical section. and a critical section C'Si in whidh the rIOCC~S Updates, ,hared

sariables. To prevent a race condition that Might reCslt in unpredictable %alue.s being assigned to thie

shared variables, only one process is allowed to he inl its crititcal sctionl at aill i li (121. Note i I,t dlhe

two processes are di fterent: hence this is not a xi 'umuric sol utlion to the min nil cxcii iion proh emi.

When the CSP program is compiled a state -raipl %Othi 77 S i, i obitii nd. \ dhu il I) I!, All 11

cxticimmely 'lrge State Ill'ichile. at wouild nec lec lm' iiii tdious loi .1 lu It)~ debug.

10

We initially nin the verifier without any fairness constraints-See Figure 5-2. We first check to see if

both processes are ever in their critical regions at the same time. This property is succintly expressed by

the CTI. formula EF(CS1 A CS2). The verifier rapidly dcterinines that the formula is false--hence. the

program does guarentee mutual exclusion. Time is measured in 1/60 of a second. The first component

measures user cpu time. The second component measures system cpu time. We next check for absence

of deadlock. This is expressed by the formula AG(EF (CS1 v CS2)). The \crifier dctcnininms that this

formula is satisfied: thus, from any state that is reachable from the initial state it is always possible to get

to either (S/ or CS2.

Absence of starvation for process I is expressed by the formula AG (TI -- AF CSI). This property is

not satisfied without a fairness constraint. The reason is quite simple. When wc build the global state

graph for the program we do not make any assumptions about the relative speeds of the two processes.

Thus, the second process can make any number of steps between steps of the first process. In fact, the

second process can even run forever, thereby preventing the First process from ever making another

step. We can rule out the second type of behavior by means of fairness constraints which require that

each process be given a chance to execute infinitely often. In Figure 5-3 we restart the verifier with

several fairness constraints that prevent either process from remaining forever at the same suitement

while enabled to make a step. Under these assumptions the first process will neer starve. I low.ckcr. the

possibility of starvation still exists for the second process.

A good solution to the mutual exclusion problem should not require that processes altcinac entry

into their critical regions: CS1, CS2, CSI, CS2 In order to test that the algorithm gixen in Figure

5-1 does not require strict alternation, we check the formula

AG (CS1 -, [CS U (-'CSI A A-CSl U CS2j)j).

This formula asserts that if process I enters its critical section and subsequently leaves it, then it c,11anot

enter it again until process 2 has entered it:; critical section. [he verifier determi:ne , that tc fo)rmula is

false in less than a second. This example shos how the basic temporal orcCi tors, partic l..lry t10 N10

operator, can be nested to express complicated timing properties.

Finally, the verifier has a counterexample feature (that is not shown in the transcripts). When this

feature is cnablcd and the model checker determines that a torniula is lse ,, It will attCnpt to f"ind a pith

in the statc graph which dcmonstrates that the negation of dthe !Urmnuli is true. For :.: '!c. " the

forula has (he form AG(f), our s tcm %kill produce It path to a SL In M lhich -j holds. Fo~r

instance. wlcn the verifier determines thit thc lSt tolrnill, , .)(is fal[,, it prints out ,in C\CCL10loll Of

.4V

pI,p2: bool;
NC1,NC2,T1,T2,T2a,CS1,CS2: label;

SI,S2: process;
Si [

p1 faise;

true -

<<NC1>> skip; --noncritical section 1
p1 : true;

«<Ti *[p2 -> skip]:
<<CSI > skip; --critical section 1

p1 f alse A

S2 [
p2 false;

true ->

«<NC2 > skip; --noncritical section2
p2 :=true;

<<T2>> '~p ->

P2 false;
«<T2a > *[pI -> skip]

P2 true

<<CS2>> skip; --critical section 2
p2 :=false

Figure 5- 1: Two process muwual cxci usion program.

%S

12

GTL MODEL CHECKER (C version 2.5)

I=EF(CS I & CS2).

The cquat ion is FALIS F.

timec: (2 4)

1 = AG(EF(CS II CS2)).
'Ihle equation is I RtU E.

Urne: (4 2)

1= AG(TI -)AF CSI).
'Ihle equation is FALSE.

time: (17 12)

Figure 5-2: Transcript of znodcl chcckcr eXeCution (withouLt firneIss
constraint).

Fairness constraint: -NC1.
Fairness constraint: - NC2.
Fairness constraint: -CS1.
Fairness constraint: -CS2.
Fairness constraint: -T1 P2.
Fairness constraint: -12 p p1.
Fairness constraint: -T21I -p1, I T2a.
Fairness constraint:.

I=AG(TI -> AF: CSI.).

T he equation is TRUE.

time: (10 0)

I = AG(T2 -> AF CS2).
The equation is FALSE.

time: (29 9)

J= AG(CSL -> /%[CSI U (-CS1 & A[-CS1 U CS2flJ).

The equation is FAL SE.

time: (38 17)

Figure 5-3: Transcript of model checker eXecutI[1n (Ait th firnc;s constraint).

13 .

the mutual exclusion program in which process I ciiters its critical region, leaves, and reentcers without
ir

process 2 entering its critical section in the meantime. This feature is quite useful for debugging

purposes.

6. Other Approaches
Several papers have considered the moudel checking problem for linear tempora'l locnc ton a.let

At = (S. R, 1.) be a Kripke Structure with S, E S. and let .Xf be a linear temrporal log~c rolrniiiO . '1 bus.

f is a res~ricted pail:]bnnula in which the only state subforinulas are atomic propo~LIIum,. WC \,kISh LO

deterinen if .11A~ = A. Notice that 3.Is 1: A] t'r .11, : - IL -f. ILmcuet IS ,(1 11, K ' Lo V

able to check the truth offor-mulas Of t~he tbmir Ef where fis a restricted pat~h formla1. I n zc er, is

problem is PSPACI.-completc (Sistla & Clarke 361. Although the proof of this PSP \CI-conipletencess

result is beyond the scope Of our survey. it is easy to see that the model checking prohlkmn is NP-hard
for for-mulas of the form Ef where fis restricted path formula. We show that the dircted Hamilton:ian

path problem: is reducible to the problem of determining whetlcher Itfs=Jwhere

" A/ is a finite structure,

"*s is a state in AV and

f is the assertion (using atomic propo- itions p... . pn):

P Fp, A A. AFp A G(pj X G -p)A ... AG6(p,, X G1,,) 1.

Consider an arbitrary directed graph G P" (l) where V = 71, V WC Oblti 3 stRucture

from G by making proposition p, hold at node v, and failse .!t all other nodeS (for I : i :nP), and hy

adding a source node u, from which all vi are accessible (b'.it not v ice \crsa) ard a sink nude .i whichi

is accessible from all v, (but not vice versa). Formally, let the structure If= (U, B, 1.) con'zst of

U =VU fupli4J where uI,ui [;

B A AU (U1, V1)I v, I U [(V,. 11)jV E~ 11j {(14" U') I and

L is i~n assignment of propositions to StAtes such that

* is trtie in v, for I :s i < n

" p1 is False in v, for 1 :5 Q:5n, ioj

" j)Is false in u-ii, for 15 i:S nfl

14

It is easy to see that M.ul * fiffthere is a directed infinite path in .11 starting at u, Ahich goes through

all v, E V exactly once and ends in the self loop though u2. Note that the formMla f in the above

construction has essentially the same si/e as the as tCe griph G. Suppose that the length of the formula

to be checked was known to be much smaller than the si/c of the Kiipke structure under consideration.

Would the complexity still be high in this case? A careful inalysis hy l.ichtenstein and Plnucli

[I .ichtenstein & Pnueli 851 showed that aldough the complexity is apparenth exroncntial in the Icngth

of the formula, it is linear in the sie of the global state graph. We briefly describe their results below.

lctfbe a rcstrictcd path fonnul,. The clumrc off (1(f). is the mnllc ,t set otf firmul,,s contalnng f

and satisfying:

* -f E CI.(f) iff A CI.(/)

" iffvf 2 t CI(f). then f.f E CI(f)

" if Xf/ E CL(f), then f, E CL(f)

• if -Xf. E CL(f), then X'-,f E CL(f)

" if /Uf2 E CL(f), then f, J, XUfzj E CI(j)

It can be shown that the si/c of ('(f) is 5. length(f).

An atom is a pair A = (SA, t"A) A ith SA E S and I4 (L(f)uA .' such that:

" for each proposition Q E At', Q E IF, iff Q E, L(s 4)

" for every fA E CL(f), fA e FA iff -fA (FA

* for every fA,fl E CL(f), fivA E FA ift" f or f E FA

" for every -Xy* (CL(f), -Xf E F4 iff X-', (F4

" for every fA.f E CL(f),fU. . F4 ifff4 E F, orf. XVUL'] E .

Now, a graph G is constructed with the set of atons as the set of %ertices. (A,.) is an edge of (Of

(SA 5,9) E R and for every formula .,, if X/ c .4, then] t-. -. l A evcnuw,':tqw'cc is in infinite

path ,n in (such that if f U4, E F 4 for some atom .A on r. then there exits an atom [1, rea ,n.hle

from , ilong ir, ,iich that f E I.

Lvinfia 5: M1.% = Ff iff there exists ,n centu ility scquence ,t.1t1ng at an tom (T. ") s h that

f*(I".

q.4

15.I R

A non-trivial strongly connected component C of (he graph G is said to be self-flfilling iff for every

atom A in C and for every fUf2 E [4 there exists an atom I in C such that I F.

Lemma 6: I, Ef iff there exists an atom A = (s, f) in G such that ft' F and there exists a path

in G from I to a self-fulfilling strongly connected component.

I emma 6 he used as the basis for a linear temporal logic model checking ilgcrithin. I nis lgorithm

has the time conplexity (((.S'l -I RI) 2'/r"r'"rI)). I ithtci e,,tin ind PtIuclI 1Li[Lher \h ,! d hI . 'L, Ns

basic algorithm could he C:tended to handle a number of different notions of fairness with esentulld

the same complexity.

An alternative approach due to Vardi and Wolper [Vardi & Wulper 861 cxpluiLs the close elationship "

between linear temporal logic formulas and l, ichi automata. A Iluhi aut",,rad is a tuple

A (7, S. P. S0. F), where

I X is an alphabet.

* S is a set of states.

* p Sx× - 2S is a nonoeterministic transition function.

0 S,:S is a set of initial states.

* 1CS is a set of designated states.

A run of /I on an infinite word w = a~a,.., is a sequence As ... where s, , and S, E p,-..). for

all i_ 1. A run ss ., is acceptng if there is some designated state that rep:,ta infinitel .,ftcn. i.e., for

some .s E 1' there are infinitely many i's such that s, = s. Ihe infinite word w is uccepied by ..I if there is

an accepung run of A ovcr w. The set of infinite words accepted by .1 is denoted L(A). The tollo, ing

theorem is proed in [Vardi & Wolper 861.

Lemma 7: For every linear temporal formula \f, a liichi automata cI n. be constructcd. Ahere

Z - 2. and ISI < 2 eng tif)0 , such that L(.I) is exactly die set of coinpu.itions stisf.ing il toiula ,

f

A Knipke Structure A1f (S. R, 1.) ,ith initili state 5, E Scan be %icwed is a lmIhi ,iuitoiriion".

=(Z . S. {s,} , . S) where 1=2 A and 5' E p(s. a) iff (, s')E R and a = /.(s). Note th.t any
infinite run () this automaton is accepting. L(,) is the set of computations of ,1 m. Ihs, in ,der to

determine wheilher If. \ f it is stfflcicni to check whether 1 (.1 II) £(F ,) is 1mpt 1v h it i Ce

.

*-.- -- '-

16

determined by an automata thcoretic construction with essentially the same time complexity as the

Pnucli lichtenstcin algorithm.

One of the expected advantages of using linear temporal logic is that fairness constraints can be

handled directly. However. if fairnaess constraints arc included as part of the specificati(ms. the formulas

that must be checked will in general be quitc large. For instancc, consider It fairnes coustfint A hich

requires that progress he made from any state in the program. 'he formula that expresses this property

is

.\[A -'G(at s) -, <rest ofspecificatioj>].

which has siue O(ISI). This problem was realized by Lichtenstcin and Pnucli and b, Vmdi and Wolper.

They in fact handle fairness by means of fairness constraints in a manner very similar to the wa\ it is

handled in [Clarke et al 86a]. Another problem with using linear temporal logic is that in general it is

impossible to handle specifications which involve existential path quantifiers. Although it is possible to

check simple formulas of the form Ef where f is a restricted path formula, it is not possible to check

formulas like ,,G(EFf), which is used to express absence of deadlock in the example in section 5.

Moreover, model checking for the full logic CTL ° is no more difficult than for linear temporal logic as

was shown by Emerson and Lei (Emerson & Lei 851.

Theorem 8: If we are given an algorithm A'L.L-fL to solve the model checking problem for linear

temporal logic, then we can construct-an algorithm ,ILC7-L for the full logic CI L that has the same

order olcomplexity as ALI,TL.

7. Applications

Sequential circuit verification is a natural application for the type of verilier discussed in this paper.

Bochmann [Bochmann 821 was probably the first to reali/e the usefulness of temporal logic for

describing the behavior of circuits. I le verified an implementation of a self-timed ,arbiter using iinear

temporal logic and what he called "reachability analysis." The wo0rk of Malichi and 0% icki [Nlalichi &

Owicki 81] identified additional temporal operators required to express interesting properties of ciruits

and also gave specifications for a large class of modules used in self-timed circuit',. Although thcse

researchers contributed significantly toward dc'clopinig an adequate notation for expressing the

. correctness of sequential circuits, the problem ofmccbmically verifying a circuit remained unsolved.

In [Mishra & Clai kQ 851 Clarke and Mishra showed how the FMC algorithm could hc uised to \' ify

various temporal properties of asynchronous circuits. Ihey developed a technique for extracuing a ,tac

% % %*

~ap~.~,a~aa .%..X .~'~ * *** . ~ ~* .. '

17

graph directly from a wirc-list description of the circuit (i.e., fromn a description of the circuit in terms of

its components and their interconncctions). The model checker was then used to show that statc graph

satisfied various specifications cxpi-csscd in temporal logic. In this way they were able to decteriic that

a self-timcid qucue element descrihed in SCItL' chapter of Nlead and Con~ay [Seiuz S01 did not satisfy its

specifications. [Iheir work was later extendcd by Browne, Clai ke. Dil and \Iishri [llrownec t at

861 who showed, in gencral, how a mixed gate and switch levrel circuit simulator CoUld be USCd to extract

a state graph front a structural description of at sequential circuit. [~he hasic simulation algorithm is

showni in Figure 7-1. Cir-cuits arc usually desined uinder the a ,tmmiption that, certain Input Cqciens

and coimbinations Wl nut occur. 'I heir program exploits this 'hber\ Ail tO pres ent 1 i ombnatorial

explosion in the number of states that are generated, by allow iiig the omer to ,pccif) a set ol'condiuns

Under which the inputs can change.

(The procedure below uses a hash table that maps node
value assignments to states.To, construct the state machine,
call this procedure on a node_ value..assignmnent for the
initial state.)

procedure BuildGraph(Node.,value-assignment) return a state
begin
if there is a state for the node -value -assignment
already in the table then return the state;
elIse

Create a new state;
* Label state with nodes that have 1 values:
* Store state dnd node values together in hash table;

fonr each possihle input assignment do
Combine current values for internal nodes and input
assignment into a new node _value _assigament;
Simulate one step to find a new node assignment;
Call BuildGraph recursively on new node issignment;
Add value returned by previous line to sucersors of
current state;

end
end

end
*Figure 7- 1: Algoi ithm For Consi ructing K ripke StrucLu re 1:r01m Circuit

The circuit simulator in [Browne ct al 861 used a unit-delay timing model ini which the switching

delais of all the transistors and gales are assumed to he equal. While a unit-dcl-iy miodel is satmst',ittory

for synichronious circuits. it inay not be approtiitc for is nchiiounitis Circitms. In !lOmll & Clarke S61J I Ml

and Clarke showed how Kripke ,tructures could be extracted froin a gate Ic. el description ot . Ccuitut

uinder a model of circuit beha~tor that permittedl arbitrary non/ero dclays to he associated i ith the

outpuits otf the ii.tcs. [he hasic idea 1ehind thc ii illpruich i itsip.(m-All i \Nl) te llh

_A

18

two inputs. x and y, and a single output z. Assume that the gate is in an unstable con Figuration %Aith x

low, y high, and z high. The Kripke structurc for the circuit containing this gate ill have a state

corresponding to the unstable configuration as shown in Figure 7-2. The st.itc will haeC a sel-loop and

a transition to another state representing a stable confliguration in which the outtUt is low. Fairness

constraints, as described in Section 4, arc used to insurc that Ie s stem docsnt remai in an unstable

configuration forever. In the case of the AND gate, it is sufficient to rcqui.rc that iilnitely often

z = xAy.

XYZ z

Figure 7-2: Krikpe structure for unstable configuration of AND gate.

In practice, the arbitrary delay model is much too conservatie. Many circuits are 'Ilrnost speed

independent": [hey do not appear to te correct under a pure arbitrary delay miodel, btL \%0uld ,. rk

given reasonable assumptions about the relationships between the delays. When the ciruit designer

has a great deal of control over the magnitudes of circuit delays, exploiting more detailcd know ledge of

circuit timing can result in smaller and faster circuits. In fact, actual circuits often rely on such

assumptions. In (Browne et al 85] and [I)ill 86] a method is described for adding such asumptioins to a

circuit description and incorporating them into the state-graph construction. Possible timing constraints

include constant tipper and lower bounds on individual delas, and bounds on the differences hei~ecn

dclays. Using constraints of this form, one can say for example: "the delay of the first AN) gate is

between 5 and 10 nanoseconds" or "the delay of the first AND gate is greater thdn the delay uf the

second AND gate." The state graph constructed with respect to a parneutlar set of dcla 1ssunptions

rules out some circuit executions which would be allowed Under an aritrary dela',' mnodel. I lence,

formulas in CTIL which might not have been true in an arbitrary delay model rna be true %ith re.pect

to particular delay assumpgtions (because all the coonterexample paths -ire ruled out by tho ll iy

assumptions). This technique A;as applied to a patented as, n.hronous qLLe cCell in [Buw ie et Ai S 51.

The aLthor, determined thint the cUt did 1lot mect its specificttions under the ,u rlti.ir eclcot dcli

" ",- .,,. -,',.'", ',.-,. 'V.-.,,", " . ", .. ,'.V , ,.,. ...-...-...V.... -,.

19

model, However, under tie assumption that die input was slower than two of the circuit gates, they

showed that the circuit met its temporal logic specifications.

An alternative approach obtains the state diagram by compilation from a specification of the original

(synichronous) circuit in a simple programming language-like notation. IBrowkne and Clarke ([Browne et

al 861, [Browne & Clarke 861) use ai Pascal-like state machine descr-iption language cillcd SML- for this

Ipurpose. [he language includes the standard control structures if, lhile, and loop/exit. A colicgin

stdternnt is ailso pros ided for siniLta1neouus execuion of statements in lock-step. Since S\11 progiJITlS

'A Il IIUltimately bc implemnented in hardware, the only dlata types pcrmittcd arc bouIi ind hind)

integer. The output of the SMIL compiler is a deterministic \looic Mlachine that car'. be aii~~wl

.aplcmented as a P1 A. PAL.. or a ROM. he output can also be analyied for correctness Using the

EMC algorithm. In [B~rowne 861 Browne describes a specialized sersion of the EMAC algorithm that can

check Moore machines much more rapidly than the original algorithm.

Another potential area of application is the verification of network communication protocols. The

alternating bit pro tocol [Bartlet et al 69] for reliable transmission of messages by a nois> communication

channel is a simple example of stuch anl algorithm. By using the CTL model checking procedure it is

possible to determine in a few seconds whether this protocol mcets its spucifico~ions [Clarke ct afl ml

Sitikis at Grenoble [Quielle & Sifakis 811 and Kur~han at Bell Labs [Kurshan Q.6]1 also 1Scor. ,iicred

applications involving network protocols. The dvlay assumptions mentioned above mnay be u~eu1d Cor

decrfibing the real-time behavior of such protocols.

8. Conclusion
Although the serification technique described in this paper has already heen used to rind somne

nontrivial errors in circuit designs and communications protocols, more research needs to he klone

before it will bccome a truly practical dcbugging tool for use by 's sten desmiicis. One piohlein is, die

expressibility of the underlying temporal logic. For circult specification tmPi4 J%-gratpis may te more

natural to use than temporal logic Fortmulas. Of course. ternporal logic is more general since there IS TIo

analogue of negation, disjunction, or conjunction for timing diagrams. It nia he possible to either

systemnatically translate timing diagrams into temnporal logic formulas or check thcmi dmrctl using ain

algorithm similar to the one used by the model checker. If so, this would siplfs the task Of spctity inv

a complicated circuit and also allow the designer to be Mole conf-iden that ,peCificAions actualh nca

what hc thinks they mean.

20

Thc most important problem, however, is the viate explosion problem. Thcrc are several different

r strategies for handling this problem. In wiertying asynchronous circuits, for example, buggy circuits

sometimes result in much larger state graphs than correct circuits. This happens because the actiit.V in

the circuit is muLch more diwnodred after an error has occuired. One possible SOIlution in this case is to

run the prog-ri-m which tic h state graph)nd die model checker as, co-routines, creating staes only

as they need to he referenced by Llie model-checker. In [Dill 86] this techniqueI is called 'a:.v siai'e

gcncerattot'. by analoy to lazy C%\ alaiwn in programnming Irlnguage iniplcmntations. 13v usinr, -,his

method, anl error could be disco%. ercd .ind reported after cornstructing (-,nl- a small -,i :Ii e ent[ir

stotw graph: tIs wo(uld it Oily ,PeC LIP di 111 %eriilunl proceSS. I[on11 LIko 1m)A !L p '>. Mc to

%erify sonlic circ:uits wich could nut bc -veritficod if the entire vi ipil had to be constructed.

Another approach to the state explosion problemn is to exploit the hierarchical stracture of complex

finite state concurrent systems. If an appropri-ate Suibset of CII1. is used t[Mis hra & Clarke 851, [Clarke

cct SO]6b), then lower lexel SubcL '1cuiLs, can be simplified by "hiding" some of thecir internal nodes (m1ore

precisely, making it illegal to use them in temporal logic forla.1,s) and mcraing groups oif states that

become indistinguishable into single state. P~reliminary research in [Mishra & Clarke 85] inidicaites :11it

by using this tzchnique it may be possible to cut-down dramnatcally on thie number of states that need

to be examniecd.

Finally. special technliqUes may be appropriate for con7current Systems that are0CMP~ 01m'sc oP rumi,

idnibcal p1roc'-,Ss~s. Comiid~r. foL. examplle, a distributed rmutual eXCIlusionF algorithm (Fr i~c~

arrang~ed in a ring network in which mutual exclusion is guaranteed by means of a coken thur is psc

around the ring ([Dijkstra 85]. [Kurshan 85], [Martin 85]). A strategy that is often used for e eng

-e ~~such system-. is to consider first a reduccd system wAith one or two processes. If it is possib! le - 'how0 thalt

the reduced systemn is correct and if the indi% idual processes are really identicail, then one s emnpt Ai to

L1LuIiC WL Umic h entire systi will be Lu' icLt. In [Clar ke cc al '06b] an aL i p i ade : ro- dc a

solid theoretical basis that w ill prevent 1Fallacious conclusions in aruetso his type. I

* ~describe a temporal logic called lidextef C71 * or ICTL* for specify ing iietworks (-f identical pocss

111C logic includes all of ClH. wh the cxcc,,ption of the nexttimec operator: in addition, it permits

formulas of the form A fi) and V](t) where fli) is a forrnuia in which all 0f tLhe ttomic p psin

are subs..i ipted by i. A- Krmpke structure f Ior i family of' N identical pri-cesses may be obriincd %s a

product Of the state graphs of th di dual processes. Instances of the s. me1 at'1mlep s1i inl

differcrnt proccesses ire liugmhcd hv using the number o)f the process as i ski,ciipt, thus, 1,

ilIrcsents thc instaLnce or dtoiT1iC piop()sition I i- v~rc ih prix-ss 5.

21

Since a closed formula of the new logic cannot contain any atomic propositions with constant index

values, it is impossible to refcr to a specific process by writing such a formula. Hence. changing the

number of processes in a family of identical processes should not effcct the truth of a formula in the

logic. This intuitive idea is made precise by introducing a new notion of bisimulaution [Milner

79] between two Kripke structures with the same set of indexed propositions hut different sets of index

values. It is possible to prove that if two structures correspond in this manner. a closed tornula of

Indexed CTL" will be true in the initial state of one if and only if it is true in the initial stite of the

other.

-"a

These ideas are illustrated in [Clarke et al 86b] by considering the distributcd mutual exclusion

algorithm mentioned above. The atomic proposition ci is true when the i-th process is in its critical

region, and the atomic proposition di is true when the i-th process is delayed waiting to enter its critical

region. A typical requirement for such a system is that a process waiting to enter its critical region will

eventually do so. This condition is easily expressed in ICTL' by the formula AAG(d, .\AFc,). The

results of [Clarke et al 86b] can be used to show that exactly the same ICTL ° formulas hold in a network

with 1000 processes as hold in a network with two processes. The EMC algorithm can be used to check

automatically that the above formula holds in networks of sizetwo and conclude that it will also hold in

networks of size 1000. At present this methodology has only been partially automated, hov.eer, The

bisimulation must be established by hand and this generally requires some representation of th- larger

Kripke structure. Several researchers are attempting to find a way of automating this phase in a maoner

that avoids building the larger Kripke structure.

Other techniques for avoiding the state explosion problem are being investigated by Kurshan and

Wolper. In Kurshan's system [Kurshan 851 this problem is handled by using a homomorphibm to

collapse a large state machine into a much smaller one while prescrving those properties that are

impo tant for 'erifkatiun. Since Kuishan does not use temporal logic formuUlas for shcciialn. Ie ']as

no analogue of the indexed formulas or of the bisimulation theorem u;ed in [Clarke ,t al 86]. \Vn'lp-er

[Wolper 86] considers a logic somewhat like IC TL" for reasoning about programs that are d.ita-

independent, however, his indexed variables range over data elements, not o\er processes. .\lso, there

is no notion of correspondence between structures in his work. Some ultimate limiations on this t pe of

reasoning are discussed in Apt and Kozen [.\pt & Kozen 86].

-S

".. " % ''"'. "' , " ,' ,,'"w
"

''' % %" ,''"", " ' ' ,'.".,""W °' " W " '", % "'' ".. ' ,-. . • ".' . " ''. '. ,, ..

22

References

[Apt & Koicn 86] K. Apt and 1). Kozen. L.imits for Automatic Verification or" Finite-State Concurrent

Sy tems. Inf Process. Lett. 22(6):307-309, 1986.

[BartIct cEt al 69] K.A. Bartte, R.A. Scantlcbury. P.T. Wilkinson. A Note on Reliable Full-Duplex

Transmission o.er Ha'lf-Duplex Links. Communications of the. 1I1 12(5):260-26., 1969.

[Ben-Ar ct al 83] M. Bcn-Ari, Z. Manna. A. Pnculi. The Temporal logic of Branching Time. Acta

In/brmatica (20):207-226, 1983.

[Bochmann 82] G. V. Bochmann. Hardware Specification with Temporal Logic: An Example. IE.'E

Transactions on Computers C-31(3), March, 1982.

[Browne 86] M. C. Browne. An Improved Algorithm for the Automatic Verification of Finite State

SyStcms using Temporal Logic. In Proceedings of the I086 Confrence on Logic in (omputcr Scletce.,

pages 260-267. Cambridge, Massachusetts, June, 1986.

[Biowne & Clarke 86] M. C. Browne, F. M. Clarke. SML: A high level language for the design and

verification of Finite State Machines. In IFIP WG 10.2 International Working Confl'rencefroni !IDL

Descriptions to Guaranteed Correct Circuit Dezigm,. Grenoble, [,n e.. IFIP, Scptc-ber, 1986.

[Browne et al 85] M. C. Browne, E. %,I. Clarke, 1).)ill. Checking the Correcuics of Sequcntial

Circuits. In Proceedings of the 1985 Internationial Conjfrence on Computer Design. I-EE, Port Chcter,

New York. October, 1985.

23

[Birowne et al 86] M. Browne, E. Clarke, D. Dill, B. Mishra. Automatic Verification of' Sequential

Circuits using Temporal Logic. [FEE Transactions on Computers C-35(1.2). December, 1986. '*

(Browne et al 6b] M. C. Browne, E. M. Clarke, and D. Dill. Automatic Circuit Verification Using

Temporal L~ogic: Two New Examples. G.J. Milne and P.A. SUbrahmanyarn (editors). lorinal Aspects

of VLSI Design. Elsevier Science Publishers (North Holl~and), 1986b.

[Clarke & Emerson 81] F.M. Clarke, F.A. Emnerson. Synthesis of Synch ronization Skeletons for

Branching Trime Temporal Logic. In Proc. c/ the Workshop on lougic of Prograins. Springer- Verlag,

Yorktown Heights, NY, 1981.

[Clarke et a] 86a] E.M. Clarke, E.A. Emerson, A.P. Sistla. Automatic Verification of Finite-State

Concurrent Systems using Temporal Logic Specifications. ,ICM Transactions on Programming

Languages and Systemis 8(2):244-263, 1986.

[Clarke et at 86b] E. 110. Clarke, 0. Gmumberg, 'vI. C. Browne. Reasoning about Networks with many

identical finite-state processes. In Proccedings of the Fifth Annual ACA! Symtposium on Principles of

Distributed Computing., pages 2.40-248. ACIM, Au~gust. 1986.

[Dijkstra 85] E. Dijkstra. Invariance and non-dctcrminacy. fit C.A.R. Hoare And J.C.Shepherdson

(editors), itfathemnatical Logic and Programnming Languages, pages 157-163. Prentice- Hall, 1985.

[Dill 861 D. Dill. A Trace Theoretic Approach to Asynchronous Circuit Verification. Workshop on

Design and Implementation of Concurrent programs,G roil ingcn, The Nethierlands, November 17-21.

1986

24

[Dill & Clarke 86] David L. Dill and Edmund M. Clarke. Automatic Verification of Asynchronous

Circuits using Temporal Logic. lEE Proceedings 133, pt. E(5), September, 1986.

[Emerson & Clarke 811 E.A. Emerson and EM. Clarke. Characterit.ing Properties of Parallel Programs

as Fixpoints. In Springer Lecture Notes in Computer Science. Volume 85: Proc. of the Seventh

International Colloquium on Automata, languages and Programming. Springer Vcrlig. 1981.

[Emerson & Halpern 831 .A. Emerson, J.Y. Halpern. ""Sometimes" and "Not Never" Revisited: On

Branching versus Lincar Time". In Proc. 10th AC Syrp. on Principles of Programming Languages.

1983.

[Emerson & Lei 851 F.A. Emerson, Chin Laung Lei. Modalities for Model Checking: Branching Time

Strikes Back. Twelfth Symposium on Principles of Programming Languages. New Orleans. La. , January,

1985.

[Francez 86] N. Francez. Fairness. Springer Verlag, 1986.

[Gabbay et al 80] 1). Gabbay,,A. Pneuli, S. Shelah, and J. Stavi, The Temporal Analysis of Fairness. 7th

ACM Symposium on Principles of Programming Languages. :164-173, January, 1980.

[Hoare 78] C.A.R. Hoare. Corrmmunicating Sequcntial Processes. Cumntunittiuas if the ACM 21(8),

August, 1978.

[Hughes & Creswell 77] G.E. Hughes and M.J. Creswell. An Introduction to Modal Logic. Methuen

and Co., 1977.

AA % 'Z L

25

[Kurshan 85] R.P. Kurshan. Modelling Concurrent Processes. In Proc. of Syomposia in Applied

fa themzaiics. 1985.

[Kurslian 86] R.P. Kurshanl. Testing Containment of w-Regzelar Languages. Technical Report

1121-861010-33-TM, Bell Laboratorics Tecchnical Mcmorandum, 1986.

[Lamport 801 L. Lamport. "Sometimes" is Sometimes "Not Never". In Seventh Annual ACH

Symposium oil Principles of Programming Languages, pages 174-185. Association for Computing

Machinery, Las Vegas, January, 1980.

[TLehmann et at 81] D. Lchmann, A. Pneuli, J. Stavi. Impartiality, Justice, and Fairness: The Ethics of

Concurrent Termination. Automata Languages, and Programmning Springer Verlag LNCS 115, 1981.

[Lichtenstcin & Pnueli 851 0. Lichtenstein and A. Pnueli. Checking that Finite State Concurrent

Programs Satisfy T'heir Linear Specification. In Con~ference Record of the Twelth Annual ACM

Symposium onl Principles of Programming Languages. New Orleins, La., Janlua'ry, 1985.

[Malachi & Owicki 811 Y. Malachi and S. S. Owicki. Tremporal specifications of Self-Trimed Systems.

I n I-.'1. Ku ng, Rob Sproull,. and G. Steele (editors), VLSI Systems and Computations. 198 1.

[Martin 851 A. Martin. The Design uf a Self-Timed Ciicuit. rui Dikuibuted Niutuai ExclulSiOn. Ill

Henry Fuchs (editor), Proc. 1985 Chapel Hill Comnf onl VLSI, pages 247-260. 1985.

[Milner 791 R. Milner. Lecture NVotes in Comipu ter Science. Volume 92: A1(',IICuLIIsof('nnulltllllclting

Systems. Springer-Verlag, 1979.

26

(Mishra & Clarke 85] B3. Mishra, E.M. Clarke. Hierarchical Verification of Asynchronous Circuits using

Temporal Logic. Theoretical Computer Scienice 38:269-291, 1985.

[Owicki & Limport 82] S. Owicki, L. Lamport. Proving Liveness Properties of Concurrcnt Programs.

ACM Transactions on Programming languages and Sysiemns 4(3):455-495, July, 1982.

[Pnculi 77] A. Pneuli. The Tciporal Semantics of Concurrent Programs. In 181h Spmposium on

Foundations of Compu ter Science. 1977.

(QuieIle & Sifakis 811 J.P. Quielle, J. Sifakis. "Specification and Verification of' Concurrent Systems in

CESAR". In Proc. of the Fifth International Symposium in Programming. 1981.

(Quielle & Sifakis 821 J.P. Quiclle, J. Sifakis. Fairness and Related Properties in TIransition Systems.

IMA G(292), March, 1982.

[Seitz 80] C.Seitz. System Timing. Inroduction to YLSI Systems (C'.Mead and L.Coniway). Reading,

MA, Addison-Wesley, 1980.

[Sistla & Clarke 86] A.P. Sistla, E.M. Clarke. Complexity of Propositional 'lemporal Logics. J1ournal of

the ,lssociation for Comiputing Machinery 32(3):733-749, J uly, 1986.

[Vardi & Wolper 86] N1. Vardi and P. Wolper. An Automata-Theoretic Approach to Automatic

Program Verification. In Proceedings of the Conference on Logic ini Computer Science. Boston, Mass.,

June, 1986.

[Wolper 86] P. Wolper. Expressing Interesting Properties of Programs in l'ropositional Temporal

Logic. In Thirteenth A1CM Symposium on Principles of Programming Languages. 1986.

IL Jv\

INI
ILM"ID

.

N~f~Mff, I

°]

----p

